Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 225 x^{14} - 399 x^{13} + 1048 x^{12} - 3363 x^{11} + 7494 x^{10} - 10575 x^{9} + 7407 x^{8} + 3225 x^{7} + 20371 x^{6} - 86466 x^{5} + 126072 x^{4} - 98271 x^{3} + 41544 x^{2} - 8235 x + 675 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-75915107157998220182825835900483=-\,3^{9}\cdot 199^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{9} - \frac{2}{15} a^{8} + \frac{1}{15} a^{7} + \frac{4}{15} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{7}{15} a^{2} - \frac{2}{5} a$, $\frac{1}{15} a^{10} + \frac{2}{15} a^{8} + \frac{2}{15} a^{7} - \frac{1}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{15} a^{4} + \frac{2}{15} a^{3} + \frac{1}{5} a$, $\frac{1}{15} a^{11} + \frac{1}{15} a^{8} + \frac{2}{15} a^{7} - \frac{2}{15} a^{5} + \frac{1}{5} a^{4} - \frac{4}{15} a^{3} + \frac{2}{15} a^{2} - \frac{1}{5} a$, $\frac{1}{45} a^{12} - \frac{1}{45} a^{10} - \frac{1}{15} a^{8} - \frac{1}{15} a^{7} - \frac{1}{45} a^{6} - \frac{7}{15} a^{5} - \frac{17}{45} a^{4} - \frac{4}{15} a^{3} - \frac{2}{15} a^{2} + \frac{2}{5} a$, $\frac{1}{495} a^{13} - \frac{1}{495} a^{12} - \frac{1}{495} a^{11} - \frac{1}{45} a^{10} - \frac{4}{165} a^{9} + \frac{6}{55} a^{8} - \frac{16}{495} a^{7} - \frac{53}{495} a^{6} + \frac{148}{495} a^{5} - \frac{41}{99} a^{4} + \frac{38}{165} a^{3} - \frac{2}{55} a^{2} + \frac{1}{11} a + \frac{5}{11}$, $\frac{1}{495} a^{14} - \frac{2}{495} a^{12} - \frac{4}{165} a^{11} + \frac{2}{99} a^{10} + \frac{1}{55} a^{9} + \frac{1}{99} a^{8} - \frac{4}{55} a^{7} + \frac{62}{495} a^{6} - \frac{8}{165} a^{5} + \frac{41}{495} a^{4} - \frac{26}{55} a^{3} - \frac{8}{55} a^{2} + \frac{8}{55} a + \frac{5}{11}$, $\frac{1}{495} a^{15} - \frac{1}{165} a^{12} + \frac{8}{495} a^{11} + \frac{1}{55} a^{10} + \frac{14}{495} a^{9} + \frac{13}{165} a^{8} - \frac{23}{165} a^{7} - \frac{1}{55} a^{6} + \frac{238}{495} a^{5} - \frac{79}{165} a^{4} - \frac{58}{165} a^{3} - \frac{32}{165} a^{2} - \frac{9}{55} a - \frac{1}{11}$, $\frac{1}{182137727475} a^{16} - \frac{8}{182137727475} a^{15} + \frac{21831562}{182137727475} a^{14} - \frac{152820794}{182137727475} a^{13} - \frac{1735495727}{182137727475} a^{12} + \frac{51425831}{36427545495} a^{11} + \frac{4412414966}{182137727475} a^{10} - \frac{5800042252}{182137727475} a^{9} + \frac{26314655123}{182137727475} a^{8} - \frac{12816066319}{182137727475} a^{7} + \frac{478991386}{16557975225} a^{6} + \frac{59660238347}{182137727475} a^{5} - \frac{119613964}{20237525275} a^{4} + \frac{1286618814}{4047505055} a^{3} + \frac{1715375612}{5519325075} a^{2} - \frac{29874391}{809501011} a + \frac{385474516}{809501011}$, $\frac{1}{4553443186875} a^{17} + \frac{4}{4553443186875} a^{16} + \frac{21831466}{4553443186875} a^{15} + \frac{396938}{16557975225} a^{14} + \frac{92717393}{182137727475} a^{13} - \frac{46693624924}{4553443186875} a^{12} + \frac{1250290901}{413949380625} a^{11} + \frac{7810785446}{910688637375} a^{10} + \frac{104632060109}{4553443186875} a^{9} + \frac{693728010467}{4553443186875} a^{8} + \frac{619398204853}{4553443186875} a^{7} - \frac{23191035686}{4553443186875} a^{6} - \frac{159366171277}{413949380625} a^{5} + \frac{1877763418423}{4553443186875} a^{4} - \frac{404131435643}{1517814395625} a^{3} - \frac{9899983997}{505938131875} a^{2} + \frac{23021710431}{101187626375} a - \frac{8105548981}{20237525275}$
Class group and class number
$C_{3}\times C_{9}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{284930594}{137983126875} a^{17} + \frac{2421910049}{137983126875} a^{16} - \frac{29778589612}{413949380625} a^{15} + \frac{346776974}{1839775025} a^{14} - \frac{1245077486}{3311595045} a^{13} + \frac{29892962502}{45994375625} a^{12} - \frac{772462250902}{413949380625} a^{11} + \frac{15195361676}{2508784125} a^{10} - \frac{5211559732538}{413949380625} a^{9} + \frac{736120813084}{45994375625} a^{8} - \frac{308018715286}{37631761875} a^{7} - \frac{447123260322}{45994375625} a^{6} - \frac{1777185034336}{37631761875} a^{5} + \frac{21241509331313}{137983126875} a^{4} - \frac{25916556263174}{137983126875} a^{3} + \frac{5518537087754}{45994375625} a^{2} - \frac{345163340317}{9198875125} a + \frac{8776884742}{1839775025} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35164430.4379 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.118803.1 x3, 3.3.39601.1, 6.0.42342458427.1, 6.0.42342458427.2, 6.0.1069227.2 x2, 9.3.1676803696167627.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1069227.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $199$ | 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |