Normalized defining polynomial
\( x^{18} - x^{17} + x^{16} - 39 x^{15} + 39 x^{14} - 39 x^{13} + 476 x^{12} - 818 x^{11} + 5739 x^{10} - 10185 x^{9} + 13605 x^{8} - 52973 x^{7} + 10679 x^{6} - 11572 x^{5} + 80200 x^{4} + 256689 x^{3} + 421421 x^{2} + 316197 x + 116851 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-75855608471185389708554302866739=-\,7^{12}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(133=7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{133}(64,·)$, $\chi_{133}(1,·)$, $\chi_{133}(130,·)$, $\chi_{133}(8,·)$, $\chi_{133}(9,·)$, $\chi_{133}(74,·)$, $\chi_{133}(81,·)$, $\chi_{133}(86,·)$, $\chi_{133}(23,·)$, $\chi_{133}(106,·)$, $\chi_{133}(44,·)$, $\chi_{133}(109,·)$, $\chi_{133}(113,·)$, $\chi_{133}(50,·)$, $\chi_{133}(51,·)$, $\chi_{133}(116,·)$, $\chi_{133}(72,·)$, $\chi_{133}(60,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{3}{7} a^{14} + \frac{3}{7} a^{13} - \frac{2}{7} a^{12} - \frac{2}{7} a^{11} - \frac{2}{7} a^{10} + \frac{2}{7} a^{8} + \frac{2}{7} a^{7} + \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3}$, $\frac{1}{7763} a^{16} + \frac{214}{7763} a^{15} - \frac{687}{7763} a^{14} - \frac{2638}{7763} a^{13} - \frac{3385}{7763} a^{12} + \frac{185}{7763} a^{11} - \frac{3803}{7763} a^{10} - \frac{2259}{7763} a^{9} - \frac{297}{7763} a^{8} + \frac{2965}{7763} a^{7} + \frac{3576}{7763} a^{6} + \frac{2969}{7763} a^{5} + \frac{2530}{7763} a^{4} - \frac{2451}{7763} a^{3} + \frac{378}{1109} a^{2} + \frac{261}{1109} a - \frac{18}{1109}$, $\frac{1}{1006471927455797471152731670797337761578552639} a^{17} + \frac{25147584665119662691274443508255158985110}{1006471927455797471152731670797337761578552639} a^{16} - \frac{47058711495313395615826652757440301359341831}{1006471927455797471152731670797337761578552639} a^{15} - \frac{304988773523617002539972625444490447152761576}{1006471927455797471152731670797337761578552639} a^{14} + \frac{165940421262753828794737398779234497286652753}{1006471927455797471152731670797337761578552639} a^{13} - \frac{161804524106540399209107742394334102513790703}{1006471927455797471152731670797337761578552639} a^{12} - \frac{50758637040752966505194359971931342079225807}{143781703922256781593247381542476823082650377} a^{11} - \frac{206581344077976027651371496353862788745067040}{1006471927455797471152731670797337761578552639} a^{10} - \frac{27108251771115371337368381406476486619900551}{1006471927455797471152731670797337761578552639} a^{9} + \frac{376244712728795691511873265398267476575776078}{1006471927455797471152731670797337761578552639} a^{8} - \frac{73566479163088264792774123257229822659350658}{1006471927455797471152731670797337761578552639} a^{7} - \frac{23654871270223996343881748193382698171506306}{1006471927455797471152731670797337761578552639} a^{6} - \frac{93773022326736400731107924015614477931541360}{1006471927455797471152731670797337761578552639} a^{5} - \frac{45568910712456393152301453514622610903365277}{143781703922256781593247381542476823082650377} a^{4} - \frac{49434874096517183223346613061828487474196356}{143781703922256781593247381542476823082650377} a^{3} - \frac{14647651863820053196395938724712422466004695}{143781703922256781593247381542476823082650377} a^{2} - \frac{60733681959399806165204200212885510985737178}{143781703922256781593247381542476823082650377} a + \frac{61365233334818979143861255956650773046612790}{143781703922256781593247381542476823082650377}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}$, which has order $81$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4369063.34801 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.3.361.1, 6.0.2476099.1, 9.9.1998099208210609.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19 | Data not computed | ||||||