Normalized defining polynomial
\( x^{18} - x^{17} + x^{16} - 39 x^{15} + 39 x^{14} - 39 x^{13} + 476 x^{12} + 1177 x^{11} + 951 x^{10} - 1673 x^{9} - 14857 x^{8} - 2167 x^{7} + 23181 x^{6} + 3723 x^{5} + 245519 x^{4} - 597570 x^{3} + 418761 x^{2} - 77749 x + 32263 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-75855608471185389708554302866739=-\,7^{12}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(133=7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{133}(64,·)$, $\chi_{133}(1,·)$, $\chi_{133}(2,·)$, $\chi_{133}(67,·)$, $\chi_{133}(4,·)$, $\chi_{133}(8,·)$, $\chi_{133}(128,·)$, $\chi_{133}(79,·)$, $\chi_{133}(16,·)$, $\chi_{133}(25,·)$, $\chi_{133}(93,·)$, $\chi_{133}(32,·)$, $\chi_{133}(100,·)$, $\chi_{133}(106,·)$, $\chi_{133}(113,·)$, $\chi_{133}(50,·)$, $\chi_{133}(53,·)$, $\chi_{133}(123,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} + \frac{1}{11} a^{7} + \frac{1}{11} a^{5} + \frac{1}{11} a^{3} + \frac{1}{11} a$, $\frac{1}{11} a^{10} + \frac{1}{11} a^{8} + \frac{1}{11} a^{6} + \frac{1}{11} a^{4} + \frac{1}{11} a^{2}$, $\frac{1}{11} a^{11} - \frac{1}{11} a$, $\frac{1}{11} a^{12} - \frac{1}{11} a^{2}$, $\frac{1}{11} a^{13} - \frac{1}{11} a^{3}$, $\frac{1}{847} a^{14} - \frac{38}{847} a^{13} - \frac{5}{121} a^{12} - \frac{23}{847} a^{11} + \frac{10}{847} a^{10} - \frac{6}{847} a^{9} - \frac{342}{847} a^{8} - \frac{270}{847} a^{7} + \frac{131}{847} a^{6} + \frac{29}{121} a^{5} - \frac{178}{847} a^{4} - \frac{419}{847} a^{3} + \frac{19}{121} a^{2} - \frac{29}{121} a + \frac{5}{11}$, $\frac{1}{847} a^{15} - \frac{16}{847} a^{13} + \frac{3}{77} a^{12} - \frac{17}{847} a^{11} - \frac{1}{77} a^{10} - \frac{31}{847} a^{9} - \frac{9}{77} a^{8} - \frac{39}{121} a^{7} - \frac{26}{77} a^{6} - \frac{395}{847} a^{5} + \frac{5}{77} a^{4} + \frac{227}{847} a^{3} - \frac{4}{11} a^{2} - \frac{2}{121} a + \frac{3}{11}$, $\frac{1}{847} a^{16} - \frac{36}{847} a^{13} - \frac{38}{847} a^{12} + \frac{6}{847} a^{11} - \frac{25}{847} a^{10} + \frac{36}{847} a^{9} + \frac{30}{847} a^{8} - \frac{20}{121} a^{7} - \frac{21}{121} a^{6} + \frac{146}{847} a^{5} - \frac{234}{847} a^{4} + \frac{303}{847} a^{3} - \frac{39}{121} a^{2} + \frac{31}{121} a + \frac{3}{11}$, $\frac{1}{667491879014678243581845437271403241} a^{17} - \frac{388832377335511072610494008030704}{667491879014678243581845437271403241} a^{16} - \frac{295286835163965095629083896062685}{667491879014678243581845437271403241} a^{15} - \frac{1212510717222343847586583954069}{8668725701489327838725265419109133} a^{14} - \frac{9366122995974516223557427092159196}{667491879014678243581845437271403241} a^{13} + \frac{9321316838773802774595475609257215}{667491879014678243581845437271403241} a^{12} - \frac{9600921545697916424410761806593652}{667491879014678243581845437271403241} a^{11} + \frac{75591724898253966150605708164553}{95355982716382606225977919610200463} a^{10} - \frac{9896026543305249271367127721634291}{667491879014678243581845437271403241} a^{9} + \frac{312036951440422798104074620296061295}{667491879014678243581845437271403241} a^{8} - \frac{1015495725567477661727896852062252}{6238241859950263958708835862349563} a^{7} + \frac{20919604128945627859411964185960147}{95355982716382606225977919610200463} a^{6} - \frac{15326334588958248355142516799221817}{667491879014678243581845437271403241} a^{5} + \frac{153087272047008791584003085879445078}{667491879014678243581845437271403241} a^{4} + \frac{1620432824622019680672760185207938}{6238241859950263958708835862349563} a^{3} + \frac{14393408382653946801347847779347316}{95355982716382606225977919610200463} a^{2} + \frac{41404533970979703643824554809584904}{95355982716382606225977919610200463} a - \frac{3288411220912217401888055279562117}{8668725701489327838725265419109133}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}$, which has order $243$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7595459.56275 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.3.361.1, 6.0.2476099.1, 9.9.1998099208210609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19 | Data not computed | ||||||