Properties

Label 18.0.75613185918...0000.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{27}\cdot 5^{9}\cdot 19^{16}$
Root discriminant $86.64$
Ramified primes $2, 5, 19$
Class number $324558$ (GRH)
Class group $[324558]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4468927451, -638418210, 2540118205, -330301660, 687949530, -80761652, 116358536, -12178574, 13547997, -1240582, 1128241, -87766, 67463, -4244, 2812, -130, 75, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 + 75*x^16 - 130*x^15 + 2812*x^14 - 4244*x^13 + 67463*x^12 - 87766*x^11 + 1128241*x^10 - 1240582*x^9 + 13547997*x^8 - 12178574*x^7 + 116358536*x^6 - 80761652*x^5 + 687949530*x^4 - 330301660*x^3 + 2540118205*x^2 - 638418210*x + 4468927451)
 
gp: K = bnfinit(x^18 - 2*x^17 + 75*x^16 - 130*x^15 + 2812*x^14 - 4244*x^13 + 67463*x^12 - 87766*x^11 + 1128241*x^10 - 1240582*x^9 + 13547997*x^8 - 12178574*x^7 + 116358536*x^6 - 80761652*x^5 + 687949530*x^4 - 330301660*x^3 + 2540118205*x^2 - 638418210*x + 4468927451, 1)
 

Normalized defining polynomial

\( x^{18} - 2 x^{17} + 75 x^{16} - 130 x^{15} + 2812 x^{14} - 4244 x^{13} + 67463 x^{12} - 87766 x^{11} + 1128241 x^{10} - 1240582 x^{9} + 13547997 x^{8} - 12178574 x^{7} + 116358536 x^{6} - 80761652 x^{5} + 687949530 x^{4} - 330301660 x^{3} + 2540118205 x^{2} - 638418210 x + 4468927451 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-75613185918270483380568064000000000=-\,2^{27}\cdot 5^{9}\cdot 19^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $86.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(760=2^{3}\cdot 5\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{760}(1,·)$, $\chi_{760}(579,·)$, $\chi_{760}(161,·)$, $\chi_{760}(201,·)$, $\chi_{760}(139,·)$, $\chi_{760}(81,·)$, $\chi_{760}(339,·)$, $\chi_{760}(441,·)$, $\chi_{760}(539,·)$, $\chi_{760}(481,·)$, $\chi_{760}(419,·)$, $\chi_{760}(681,·)$, $\chi_{760}(619,·)$, $\chi_{760}(321,·)$, $\chi_{760}(99,·)$, $\chi_{760}(499,·)$, $\chi_{760}(739,·)$, $\chi_{760}(121,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{37} a^{15} - \frac{1}{37} a^{14} + \frac{14}{37} a^{13} - \frac{3}{37} a^{12} - \frac{8}{37} a^{11} + \frac{18}{37} a^{8} + \frac{18}{37} a^{7} + \frac{2}{37} a^{6} - \frac{10}{37} a^{5} - \frac{14}{37} a^{4} + \frac{1}{37} a^{2} - \frac{18}{37} a$, $\frac{1}{37} a^{16} + \frac{13}{37} a^{14} + \frac{11}{37} a^{13} - \frac{11}{37} a^{12} - \frac{8}{37} a^{11} + \frac{18}{37} a^{9} - \frac{1}{37} a^{8} - \frac{17}{37} a^{7} - \frac{8}{37} a^{6} + \frac{13}{37} a^{5} - \frac{14}{37} a^{4} + \frac{1}{37} a^{3} - \frac{17}{37} a^{2} - \frac{18}{37} a$, $\frac{1}{109188427699025625508936188858907331869590835011767098649} a^{17} + \frac{1380918577771432311547978139531753556960663299332673580}{109188427699025625508936188858907331869590835011767098649} a^{16} + \frac{518958109665705948707097636994235663410602890869468904}{109188427699025625508936188858907331869590835011767098649} a^{15} - \frac{17565800385034824468822904303011526389386207987587162409}{109188427699025625508936188858907331869590835011767098649} a^{14} + \frac{20173890945665179613809613935035308901723102289021097161}{109188427699025625508936188858907331869590835011767098649} a^{13} + \frac{1921357114440923773650586014251805037233631499924328101}{109188427699025625508936188858907331869590835011767098649} a^{12} + \frac{35057290348676054513326182537018047128027442125219297446}{109188427699025625508936188858907331869590835011767098649} a^{11} + \frac{5395968982232994379589247799818445178689548265634531273}{109188427699025625508936188858907331869590835011767098649} a^{10} - \frac{39697772327757090428004968085487437463335833253596009267}{109188427699025625508936188858907331869590835011767098649} a^{9} + \frac{48638515449551262497277840540660761006605155739246289149}{109188427699025625508936188858907331869590835011767098649} a^{8} + \frac{25895633018441478860784304323496268558788833573782023385}{109188427699025625508936188858907331869590835011767098649} a^{7} - \frac{51781488236501277415171203947331348547977432756461734157}{109188427699025625508936188858907331869590835011767098649} a^{6} - \frac{9751230376029849378822449258557350575662586628857343341}{109188427699025625508936188858907331869590835011767098649} a^{5} - \frac{41971222283760108748444443846102134746576910907688199631}{109188427699025625508936188858907331869590835011767098649} a^{4} + \frac{13877836931075514820095536333146756807839921061226109675}{109188427699025625508936188858907331869590835011767098649} a^{3} - \frac{33525122662908955666108546761512562609750564805514335651}{109188427699025625508936188858907331869590835011767098649} a^{2} - \frac{15709157532819411878509631926091211453866662328521494069}{109188427699025625508936188858907331869590835011767098649} a - \frac{34729910209668094300832019124007573868511167862614197}{2951038586460152040782059158348846807286238784101813477}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{324558}$, which has order $324558$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22305.8950792 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-10}) \), 3.3.361.1, 6.0.8340544000.3, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $18$ R ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ $18$ R ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$19$19.9.8.8$x^{9} - 19$$9$$1$$8$$C_9$$[\ ]_{9}$
19.9.8.8$x^{9} - 19$$9$$1$$8$$C_9$$[\ ]_{9}$