Properties

Label 18.0.75613185918...8064.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{18}\cdot 19^{16}$
Root discriminant $27.40$
Ramified primes $2, 19$
Class number $19$
Class group $[19]$
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 45, 0, 330, 0, 924, 0, 1287, 0, 1001, 0, 455, 0, 120, 0, 17, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 17*x^16 + 120*x^14 + 455*x^12 + 1001*x^10 + 1287*x^8 + 924*x^6 + 330*x^4 + 45*x^2 + 1)
 
gp: K = bnfinit(x^18 + 17*x^16 + 120*x^14 + 455*x^12 + 1001*x^10 + 1287*x^8 + 924*x^6 + 330*x^4 + 45*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{18} + 17 x^{16} + 120 x^{14} + 455 x^{12} + 1001 x^{10} + 1287 x^{8} + 924 x^{6} + 330 x^{4} + 45 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-75613185918270483380568064=-\,2^{18}\cdot 19^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(76=2^{2}\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{76}(1,·)$, $\chi_{76}(5,·)$, $\chi_{76}(7,·)$, $\chi_{76}(9,·)$, $\chi_{76}(11,·)$, $\chi_{76}(17,·)$, $\chi_{76}(23,·)$, $\chi_{76}(25,·)$, $\chi_{76}(35,·)$, $\chi_{76}(39,·)$, $\chi_{76}(43,·)$, $\chi_{76}(45,·)$, $\chi_{76}(47,·)$, $\chi_{76}(49,·)$, $\chi_{76}(73,·)$, $\chi_{76}(55,·)$, $\chi_{76}(61,·)$, $\chi_{76}(63,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{19}$, which has order $19$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( a^{17} + 16 a^{15} + 105 a^{13} + 364 a^{11} + 715 a^{9} + 792 a^{7} + 462 a^{5} + 120 a^{3} + 9 a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22305.8950792 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 3.3.361.1, 6.0.8340544.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $18$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ R $18$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
19Data not computed