Normalized defining polynomial
\( x^{18} - 3 x^{17} + 21 x^{16} - 390 x^{15} + 1605 x^{14} + 2517 x^{13} + 192669 x^{12} + 878361 x^{11} + 8448546 x^{10} + 34317110 x^{9} + 215974023 x^{8} + 759000693 x^{7} + 3570618183 x^{6} + 10073564715 x^{5} + 35167390251 x^{4} + 70641640257 x^{3} + 175409363589 x^{2} + 195259486710 x + 313934054923 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-75604221004961235317502546825450910936845778944=-\,2^{18}\cdot 3^{31}\cdot 13^{14}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $402.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{27} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{2}{9} a^{4} + \frac{4}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{9} a + \frac{1}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} - \frac{8}{27} a - \frac{4}{9}$, $\frac{1}{27} a^{11} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{9} a^{3} - \frac{8}{27} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{54} a^{12} - \frac{1}{54} a^{10} - \frac{1}{18} a^{6} + \frac{1}{18} a^{4} + \frac{8}{27} a^{3} - \frac{8}{27} a - \frac{1}{2}$, $\frac{1}{54} a^{13} - \frac{1}{54} a^{11} - \frac{1}{18} a^{7} + \frac{1}{18} a^{5} + \frac{8}{27} a^{4} - \frac{8}{27} a^{2} - \frac{1}{2} a$, $\frac{1}{162} a^{14} - \frac{1}{162} a^{13} + \frac{1}{162} a^{12} + \frac{1}{162} a^{11} + \frac{1}{81} a^{10} - \frac{1}{81} a^{9} - \frac{7}{54} a^{8} + \frac{7}{54} a^{7} - \frac{7}{54} a^{6} - \frac{23}{162} a^{5} + \frac{7}{81} a^{4} - \frac{7}{81} a^{3} + \frac{79}{162} a^{2} - \frac{31}{162} a - \frac{25}{81}$, $\frac{1}{162} a^{15} - \frac{1}{162} a^{12} - \frac{1}{54} a^{11} - \frac{1}{54} a^{10} + \frac{1}{162} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{17}{162} a^{6} - \frac{1}{18} a^{5} - \frac{1}{6} a^{4} + \frac{35}{162} a^{3} + \frac{13}{27} a^{2} + \frac{5}{54} a + \frac{1}{162}$, $\frac{1}{162} a^{16} - \frac{1}{162} a^{13} - \frac{1}{54} a^{11} - \frac{1}{81} a^{10} - \frac{1}{9} a^{8} - \frac{17}{162} a^{7} - \frac{1}{9} a^{6} - \frac{1}{6} a^{5} + \frac{22}{81} a^{4} + \frac{1}{9} a^{3} + \frac{5}{54} a^{2} - \frac{47}{162} a - \frac{5}{18}$, $\frac{1}{2476220912473913191403236390813275847696406319672621201114} a^{17} + \frac{43154869374924559057266954375754379556729201134292179}{137567828470772955077957577267404213760911462204034511173} a^{16} + \frac{6694778327679040870722658782842076246047084493601657919}{2476220912473913191403236390813275847696406319672621201114} a^{15} - \frac{4628426148844769560600970779212127311600053310709308149}{2476220912473913191403236390813275847696406319672621201114} a^{14} - \frac{6412231506516315360271679124418675737040441439952160318}{1238110456236956595701618195406637923848203159836310600557} a^{13} - \frac{3777001153207565751543758158941253354784015582330290403}{825406970824637730467745463604425282565468773224207067038} a^{12} - \frac{59715487289368152582628757674705673949992349313702479}{30570628549060656683990572726089825280202547156452113594} a^{11} - \frac{6210560385076448992800349064566383953825504371153644112}{1238110456236956595701618195406637923848203159836310600557} a^{10} - \frac{4304019756735579516010783569905020500491552430270970661}{2476220912473913191403236390813275847696406319672621201114} a^{9} - \frac{33312983901034311275817673405672148044986696114619289639}{2476220912473913191403236390813275847696406319672621201114} a^{8} - \frac{4644050211180752294612627336125857026628197762489490683}{412703485412318865233872731802212641282734386612103533519} a^{7} - \frac{276003725520150762953595660904221844024217113098436308631}{2476220912473913191403236390813275847696406319672621201114} a^{6} + \frac{107017286655406236256092933319081958941548516333593490031}{2476220912473913191403236390813275847696406319672621201114} a^{5} + \frac{518519228735334546092144764555644520083960785388643079321}{1238110456236956595701618195406637923848203159836310600557} a^{4} + \frac{13920177005252669524556628356493185609590063681131043091}{137567828470772955077957577267404213760911462204034511173} a^{3} - \frac{114286606626892124601712468702800194188952576481067489055}{825406970824637730467745463604425282565468773224207067038} a^{2} + \frac{61701232961409803478335990793634069075551140599668039326}{1238110456236956595701618195406637923848203159836310600557} a - \frac{589107126721521312648131557864379188716647489422048493038}{1238110456236956595701618195406637923848203159836310600557}$
Class group and class number
$C_{3}\times C_{78}\times C_{688740}$, which has order $161165160$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 96135527.08384958 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), 3.3.13689.2, 3.3.2808.1, 6.0.116215010496.4, 6.0.2761922358819.6, 9.9.460990789028310528.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.5.6 | $x^{6} + 416$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.6 | $x^{6} + 416$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |