Normalized defining polynomial
\( x^{18} - 9 x^{17} + 33 x^{16} - 60 x^{15} + 50 x^{14} - 14 x^{13} + 62 x^{12} - 268 x^{11} + 523 x^{10} + \cdots + 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-7530328934072952860672\)
\(\medspace = -\,2^{12}\cdot 107^{9}\)
|
| |
| Root discriminant: | \(16.42\) |
| |
| Galois root discriminant: | $2^{2/3}107^{1/2}\approx 16.420204160652293$ | ||
| Ramified primes: |
\(2\), \(107\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-107}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_9$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-107}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{8}a^{12}-\frac{1}{8}a^{10}-\frac{1}{4}a^{8}+\frac{1}{8}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{8}a^{2}+\frac{1}{4}a+\frac{3}{8}$, $\frac{1}{8}a^{13}-\frac{1}{8}a^{11}-\frac{1}{4}a^{9}+\frac{1}{8}a^{7}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{3}{8}a^{3}+\frac{1}{4}a^{2}-\frac{1}{8}a-\frac{1}{2}$, $\frac{1}{8}a^{14}-\frac{1}{8}a^{10}-\frac{1}{4}a^{9}+\frac{1}{8}a^{8}-\frac{1}{4}a^{7}+\frac{1}{8}a^{6}-\frac{1}{4}a^{5}-\frac{1}{8}a^{4}-\frac{1}{2}a^{2}-\frac{3}{8}$, $\frac{1}{40}a^{15}+\frac{1}{20}a^{13}+\frac{1}{20}a^{12}+\frac{1}{40}a^{11}-\frac{1}{10}a^{10}-\frac{7}{40}a^{9}+\frac{1}{20}a^{8}+\frac{7}{40}a^{7}+\frac{1}{5}a^{6}-\frac{9}{40}a^{5}+\frac{2}{5}a^{4}-\frac{9}{20}a^{3}+\frac{1}{20}a^{2}+\frac{3}{8}a-\frac{7}{20}$, $\frac{1}{40}a^{16}+\frac{1}{20}a^{14}+\frac{1}{20}a^{13}+\frac{1}{40}a^{12}-\frac{1}{10}a^{11}+\frac{3}{40}a^{10}-\frac{1}{5}a^{9}-\frac{3}{40}a^{8}+\frac{1}{5}a^{7}+\frac{1}{40}a^{6}+\frac{3}{20}a^{5}-\frac{1}{5}a^{4}+\frac{1}{20}a^{3}+\frac{1}{8}a^{2}+\frac{2}{5}a+\frac{1}{4}$, $\frac{1}{40}a^{17}+\frac{1}{20}a^{14}+\frac{1}{20}a^{13}+\frac{1}{20}a^{12}-\frac{1}{10}a^{11}-\frac{9}{40}a^{9}-\frac{3}{20}a^{8}-\frac{1}{5}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{10}a^{3}+\frac{1}{20}a^{2}-\frac{3}{8}a-\frac{3}{10}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{17}-8a^{16}+25a^{15}-35a^{14}+15a^{13}+a^{12}+63a^{11}-205a^{10}+318a^{9}-317a^{8}+206a^{7}-62a^{6}-14a^{4}+36a^{3}-24a^{2}+9a-1$, $\frac{433}{40}a^{17}-\frac{1857}{20}a^{16}+\frac{2543}{8}a^{15}-\frac{20577}{40}a^{14}+\frac{1611}{5}a^{13}-\frac{147}{10}a^{12}+\frac{26669}{40}a^{11}-\frac{104757}{40}a^{10}+\frac{9093}{2}a^{9}-\frac{197611}{40}a^{8}+\frac{142609}{40}a^{7}-\frac{55639}{40}a^{6}+\frac{3361}{40}a^{5}-\frac{4753}{40}a^{4}+489a^{3}-\frac{4411}{10}a^{2}+\frac{3463}{20}a-\frac{1021}{40}$, $\frac{81}{20}a^{17}-\frac{1439}{40}a^{16}+\frac{1283}{10}a^{15}-\frac{8759}{40}a^{14}+\frac{1195}{8}a^{13}-\frac{131}{40}a^{12}+\frac{1929}{8}a^{11}-\frac{2127}{2}a^{10}+\frac{7681}{4}a^{9}-\frac{42373}{20}a^{8}+\frac{61701}{40}a^{7}-\frac{12149}{20}a^{6}+\frac{239}{20}a^{5}-\frac{1191}{40}a^{4}+\frac{8503}{40}a^{3}-\frac{7857}{40}a^{2}+\frac{2841}{40}a-\frac{317}{40}$, $\frac{433}{40}a^{17}-\frac{3647}{40}a^{16}+\frac{12179}{40}a^{15}-\frac{4727}{10}a^{14}+\frac{2117}{8}a^{13}+\frac{151}{20}a^{12}+672a^{11}-\frac{50301}{20}a^{10}+\frac{21017}{5}a^{9}-\frac{176589}{40}a^{8}+\frac{30577}{10}a^{7}-\frac{2165}{2}a^{6}+\frac{577}{40}a^{5}-\frac{549}{4}a^{4}+\frac{18767}{40}a^{3}-\frac{7573}{20}a^{2}+\frac{5253}{40}a-\frac{717}{40}$, $\frac{81}{20}a^{17}-\frac{263}{8}a^{16}+\frac{207}{2}a^{15}-\frac{5701}{40}a^{14}+\frac{1929}{40}a^{13}+\frac{989}{40}a^{12}+\frac{10387}{40}a^{11}-\frac{1723}{2}a^{10}+\frac{6424}{5}a^{9}-\frac{24041}{20}a^{8}+\frac{28239}{40}a^{7}-\frac{519}{4}a^{6}-\frac{127}{2}a^{5}-\frac{567}{8}a^{4}+\frac{6117}{40}a^{3}-\frac{3531}{40}a^{2}+\frac{117}{8}a+\frac{31}{40}$, $a-1$, $\frac{16}{5}a^{17}-\frac{973}{40}a^{16}+\frac{349}{5}a^{15}-\frac{647}{8}a^{14}+\frac{167}{20}a^{13}+\frac{54}{5}a^{12}+\frac{4211}{20}a^{11}-\frac{22797}{40}a^{10}+\frac{3796}{5}a^{9}-656a^{8}+\frac{1717}{5}a^{7}-\frac{1067}{40}a^{6}-\frac{159}{10}a^{5}-\frac{2529}{40}a^{4}+\frac{1753}{20}a^{3}-40a^{2}+\frac{63}{10}a+\frac{2}{5}$, $\frac{11}{4}a^{16}-22a^{15}+\frac{271}{4}a^{14}-\frac{357}{4}a^{13}+\frac{189}{8}a^{12}+\frac{35}{2}a^{11}+\frac{1437}{8}a^{10}-564a^{9}+809a^{8}-732a^{7}+\frac{3299}{8}a^{6}-\frac{241}{4}a^{5}-\frac{147}{4}a^{4}-\frac{223}{4}a^{3}+\frac{759}{8}a^{2}-\frac{95}{2}a+\frac{69}{8}$
|
| |
| Regulator: | \( 5331.83618131 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 5331.83618131 \cdot 1}{2\cdot\sqrt{7530328934072952860672}}\cr\approx \mathstrut & 0.468876690957 \end{aligned}\]
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-107}) \), 3.1.107.1 x3, 6.0.1225043.1, 9.1.8389094464.2 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | 9.1.8389094464.2 |
| Minimal sibling: | 9.1.8389094464.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }^{2}$ | ${\href{/padicField/5.2.0.1}{2} }^{9}$ | ${\href{/padicField/7.2.0.1}{2} }^{9}$ | ${\href{/padicField/11.9.0.1}{9} }^{2}$ | ${\href{/padicField/13.9.0.1}{9} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | ${\href{/padicField/19.9.0.1}{9} }^{2}$ | ${\href{/padicField/23.9.0.1}{9} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{6}$ | ${\href{/padicField/31.2.0.1}{2} }^{9}$ | ${\href{/padicField/37.9.0.1}{9} }^{2}$ | ${\href{/padicField/41.9.0.1}{9} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{9}$ | ${\href{/padicField/47.3.0.1}{3} }^{6}$ | ${\href{/padicField/53.9.0.1}{9} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(107\)
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |