Normalized defining polynomial
\( x^{18} - 3 x^{17} - 9 x^{16} + 46 x^{15} + 39 x^{14} - 449 x^{13} + 87 x^{12} + 3323 x^{11} - 5496 x^{10} - 10508 x^{9} + 47263 x^{8} - 31209 x^{7} - 119189 x^{6} + 233575 x^{5} - 20211 x^{4} - 344955 x^{3} + 416495 x^{2} - 217450 x + 52025 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7521294167081161111736000000000=-\,2^{12}\cdot 5^{9}\cdot 7^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{25} a^{12} - \frac{1}{25} a^{11} - \frac{2}{5} a^{9} - \frac{2}{25} a^{8} + \frac{2}{25} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{25} a^{4} - \frac{1}{25} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{75} a^{13} - \frac{2}{25} a^{11} - \frac{1}{15} a^{10} - \frac{37}{75} a^{9} - \frac{1}{25} a^{7} + \frac{2}{15} a^{6} + \frac{12}{25} a^{5} - \frac{1}{3} a^{4} - \frac{26}{75} a^{3} + \frac{4}{15} a^{2} - \frac{1}{5} a - \frac{1}{3}$, $\frac{1}{75} a^{14} + \frac{4}{75} a^{11} - \frac{7}{75} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{8}{75} a^{7} + \frac{12}{25} a^{6} + \frac{7}{15} a^{5} - \frac{4}{15} a^{4} + \frac{29}{75} a^{3} - \frac{2}{5} a^{2} + \frac{7}{15} a$, $\frac{1}{75} a^{15} + \frac{1}{75} a^{12} - \frac{4}{75} a^{11} + \frac{1}{5} a^{9} - \frac{2}{75} a^{8} + \frac{2}{5} a^{7} + \frac{7}{15} a^{6} + \frac{1}{3} a^{5} + \frac{26}{75} a^{4} - \frac{9}{25} a^{3} + \frac{1}{15} a^{2} - \frac{2}{5} a$, $\frac{1}{3240189098625} a^{16} - \frac{7134607532}{1080063032875} a^{15} - \frac{21448182242}{3240189098625} a^{14} - \frac{2667742584}{1080063032875} a^{13} - \frac{64379569438}{3240189098625} a^{12} - \frac{12969884393}{3240189098625} a^{11} - \frac{264579266456}{3240189098625} a^{10} - \frac{262332140206}{3240189098625} a^{9} - \frac{16348767224}{1080063032875} a^{8} - \frac{11600114707}{1080063032875} a^{7} + \frac{415624086851}{1080063032875} a^{6} - \frac{684824678207}{3240189098625} a^{5} + \frac{1086726363554}{3240189098625} a^{4} - \frac{30318216158}{216012606575} a^{3} + \frac{10852178504}{648037819725} a^{2} + \frac{1365889196}{129607563945} a + \frac{6526672906}{129607563945}$, $\frac{1}{13133807101602779056875} a^{17} - \frac{670614737}{13133807101602779056875} a^{16} - \frac{74171691431008115141}{13133807101602779056875} a^{15} - \frac{12685452239415135029}{2626761420320555811375} a^{14} - \frac{19195870622630907376}{13133807101602779056875} a^{13} + \frac{17135284874437906726}{875587140106851937125} a^{12} - \frac{364362958841133510101}{4377935700534259685625} a^{11} - \frac{15259215289239536411}{2626761420320555811375} a^{10} - \frac{6547456612890805992586}{13133807101602779056875} a^{9} - \frac{591610212338378167841}{1459311900178086561875} a^{8} - \frac{1659557004480924468011}{13133807101602779056875} a^{7} + \frac{400426657899267536081}{2626761420320555811375} a^{6} + \frac{5620493510021414624396}{13133807101602779056875} a^{5} - \frac{1935817807655083171303}{4377935700534259685625} a^{4} + \frac{180174939297732002239}{875587140106851937125} a^{3} + \frac{13684753960020337877}{875587140106851937125} a^{2} + \frac{207047811752924169662}{525352284064111162275} a + \frac{73678903930593000124}{525352284064111162275}$
Class group and class number
$C_{2}\times C_{14}\times C_{42}$, which has order $1176$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 502394.782618 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 3.1.140.1 x3, 3.3.169.1, 6.0.686000.1, 6.0.1224552875.2, 6.0.19592846000.3 x2, 9.3.13244763896000.4 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |