Normalized defining polynomial
\( x^{18} + 15 x^{16} - 9 x^{15} + 81 x^{14} - 36 x^{13} + 64 x^{12} - 162 x^{11} + 780 x^{10} - 918 x^{9} + 1782 x^{8} - 1674 x^{7} + 1792 x^{6} - 1188 x^{5} + 669 x^{4} - 252 x^{3} + 63 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7467330231571086237938751=-\,3^{24}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{28} a^{12} + \frac{1}{14} a^{11} - \frac{5}{28} a^{10} - \frac{1}{28} a^{9} - \frac{3}{28} a^{8} + \frac{1}{14} a^{7} - \frac{2}{7} a^{6} + \frac{5}{28} a^{5} + \frac{1}{7} a^{4} - \frac{1}{28} a^{3} + \frac{5}{28} a^{2} - \frac{13}{28} a + \frac{2}{7}$, $\frac{1}{140} a^{13} - \frac{1}{140} a^{12} - \frac{1}{35} a^{11} + \frac{1}{5} a^{10} - \frac{1}{20} a^{9} + \frac{8}{35} a^{8} - \frac{1}{20} a^{7} - \frac{41}{140} a^{6} - \frac{11}{140} a^{5} - \frac{17}{70} a^{4} + \frac{16}{35} a^{3} + \frac{7}{20} a^{2} - \frac{29}{70} a - \frac{31}{140}$, $\frac{1}{140} a^{14} - \frac{1}{140} a^{11} - \frac{1}{35} a^{10} - \frac{3}{28} a^{9} - \frac{5}{28} a^{8} - \frac{3}{140} a^{7} - \frac{11}{70} a^{6} - \frac{1}{7} a^{5} + \frac{3}{28} a^{4} + \frac{19}{70} a^{3} - \frac{19}{140} a^{2} + \frac{3}{20} a - \frac{13}{70}$, $\frac{1}{280} a^{15} - \frac{1}{280} a^{14} + \frac{1}{70} a^{12} - \frac{1}{10} a^{11} + \frac{17}{140} a^{10} - \frac{5}{28} a^{9} - \frac{1}{10} a^{8} - \frac{11}{70} a^{7} - \frac{27}{70} a^{6} - \frac{2}{7} a^{5} - \frac{33}{70} a^{4} + \frac{39}{140} a^{3} + \frac{3}{28} a^{2} - \frac{11}{40} a - \frac{39}{280}$, $\frac{1}{120680} a^{16} - \frac{113}{120680} a^{15} + \frac{1}{12068} a^{14} - \frac{117}{60340} a^{13} + \frac{32}{2155} a^{12} + \frac{1368}{15085} a^{11} + \frac{617}{15085} a^{10} - \frac{10631}{60340} a^{9} - \frac{24}{2155} a^{8} + \frac{3474}{15085} a^{7} + \frac{5849}{60340} a^{6} + \frac{2199}{30170} a^{5} + \frac{13371}{30170} a^{4} + \frac{1989}{30170} a^{3} + \frac{33669}{120680} a^{2} - \frac{16503}{120680} a - \frac{11771}{60340}$, $\frac{1}{9318306200} a^{17} + \frac{24121}{9318306200} a^{16} - \frac{9258169}{9318306200} a^{15} + \frac{23382927}{9318306200} a^{14} + \frac{2197987}{2329576550} a^{13} + \frac{7588801}{4659153100} a^{12} - \frac{383874917}{4659153100} a^{11} + \frac{110525857}{4659153100} a^{10} - \frac{578881193}{4659153100} a^{9} - \frac{174015448}{1164788275} a^{8} - \frac{283947063}{2329576550} a^{7} + \frac{365394488}{1164788275} a^{6} - \frac{98363227}{4659153100} a^{5} - \frac{1076187701}{4659153100} a^{4} - \frac{2382409763}{9318306200} a^{3} - \frac{386272259}{1863661240} a^{2} - \frac{2615983827}{9318306200} a - \frac{565617651}{9318306200}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42855.4917555 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.1.31.1 x3, \(\Q(\zeta_{9})^+\), 6.0.29791.1, 6.0.195458751.2 x2, 6.0.195458751.1, 9.3.15832158831.4 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.195458751.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |