Properties

Label 18.0.74461665313...2384.4
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{18}\cdot 3^{44}\cdot 19^{16}$
Root discriminant $401.79$
Ramified primes $2, 3, 19$
Class number $161970201$ (GRH)
Class group $[161970201]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5640625, 0, 4661278569, 0, 4024770228, 0, 1406615562, 0, 255741786, 0, 25743195, 0, 1398894, 0, 36423, 0, 342, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 342*x^16 + 36423*x^14 + 1398894*x^12 + 25743195*x^10 + 255741786*x^8 + 1406615562*x^6 + 4024770228*x^4 + 4661278569*x^2 + 5640625)
 
gp: K = bnfinit(x^18 + 342*x^16 + 36423*x^14 + 1398894*x^12 + 25743195*x^10 + 255741786*x^8 + 1406615562*x^6 + 4024770228*x^4 + 4661278569*x^2 + 5640625, 1)
 

Normalized defining polynomial

\( x^{18} + 342 x^{16} + 36423 x^{14} + 1398894 x^{12} + 25743195 x^{10} + 255741786 x^{8} + 1406615562 x^{6} + 4024770228 x^{4} + 4661278569 x^{2} + 5640625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-74461665313712352487171933214411650949175312384=-\,2^{18}\cdot 3^{44}\cdot 19^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $401.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2052=2^{2}\cdot 3^{3}\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{2052}(1,·)$, $\chi_{2052}(1027,·)$, $\chi_{2052}(577,·)$, $\chi_{2052}(139,·)$, $\chi_{2052}(1165,·)$, $\chi_{2052}(727,·)$, $\chi_{2052}(1603,·)$, $\chi_{2052}(853,·)$, $\chi_{2052}(1879,·)$, $\chi_{2052}(1753,·)$, $\chi_{2052}(871,·)$, $\chi_{2052}(1897,·)$, $\chi_{2052}(427,·)$, $\chi_{2052}(1453,·)$, $\chi_{2052}(175,·)$, $\chi_{2052}(1201,·)$, $\chi_{2052}(505,·)$, $\chi_{2052}(1531,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{475} a^{9} + \frac{2}{25} a^{5} - \frac{6}{25} a$, $\frac{1}{475} a^{10} + \frac{2}{25} a^{6} - \frac{6}{25} a^{2}$, $\frac{1}{475} a^{11} + \frac{2}{25} a^{7} - \frac{6}{25} a^{3}$, $\frac{1}{475} a^{12} + \frac{2}{25} a^{8} - \frac{6}{25} a^{4}$, $\frac{1}{2375} a^{13} + \frac{2}{2375} a^{9} - \frac{3}{125} a^{5} + \frac{16}{125} a$, $\frac{1}{2434375} a^{14} - \frac{242}{486875} a^{12} + \frac{1442}{2434375} a^{10} - \frac{1104}{25625} a^{8} + \frac{6952}{128125} a^{6} - \frac{10828}{25625} a^{4} + \frac{39176}{128125} a^{2} + \frac{19}{41}$, $\frac{1}{2434375} a^{15} - \frac{37}{486875} a^{13} + \frac{1442}{2434375} a^{11} - \frac{66}{486875} a^{9} + \frac{6952}{128125} a^{7} - \frac{1193}{25625} a^{5} + \frac{39176}{128125} a^{3} - \frac{44}{5125} a$, $\frac{1}{4936531563466215265625} a^{16} - \frac{369988864477674}{4936531563466215265625} a^{14} - \frac{1870895058258375368}{4936531563466215265625} a^{12} + \frac{3615324675649603282}{4936531563466215265625} a^{10} + \frac{2227795693850919232}{259817450708748171875} a^{8} - \frac{1002890274659725243}{259817450708748171875} a^{6} + \frac{98871727233305090261}{259817450708748171875} a^{4} + \frac{6229314821107790836}{259817450708748171875} a^{2} + \frac{385906977804629}{16628316845359883}$, $\frac{1}{4936531563466215265625} a^{17} - \frac{369988864477674}{4936531563466215265625} a^{15} + \frac{207644547411610007}{4936531563466215265625} a^{13} + \frac{3615324675649603282}{4936531563466215265625} a^{11} + \frac{4914405281107728658}{4936531563466215265625} a^{9} - \frac{1002890274659725243}{259817450708748171875} a^{7} + \frac{9494524189495719136}{259817450708748171875} a^{5} + \frac{6229314821107790836}{259817450708748171875} a^{3} + \frac{231149857524537338}{2078539605669985375} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{161970201}$, which has order $161970201$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{106990956}{850321697984375} a^{17} - \frac{35793065466}{850321697984375} a^{15} - \frac{3630434636592}{850321697984375} a^{13} - \frac{122734353245112}{850321697984375} a^{11} - \frac{1852782228916123}{850321697984375} a^{9} - \frac{736191985340187}{44753773578125} a^{7} - \frac{67227115544451}{1091555453125} a^{5} - \frac{4339543074810276}{44753773578125} a^{3} - \frac{10328848430643}{358030188625} a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5772307958.489205 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 3.3.29241.2, 6.0.54722309184.1, 9.9.532962204162830310969.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.1.0.1}{1} }^{18}$ $18$ $18$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ R $18$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ $18$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{18}$ $18$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
19Data not computed