Normalized defining polynomial
\( x^{18} + 113 x^{16} + 4986 x^{14} + 109769 x^{12} + 1290015 x^{10} + 8207609 x^{8} + 29008613 x^{6} + 56338590 x^{4} + 55167918 x^{2} + 20511149 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-74422866183848971206656000000000000=-\,2^{30}\cdot 5^{12}\cdot 7^{12}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{29} a^{8} - \frac{9}{29} a^{6} - \frac{6}{29} a^{4} + \frac{11}{29} a^{2}$, $\frac{1}{29} a^{9} - \frac{9}{29} a^{7} - \frac{6}{29} a^{5} + \frac{11}{29} a^{3}$, $\frac{1}{29} a^{10} - \frac{14}{29} a^{4} + \frac{12}{29} a^{2}$, $\frac{1}{29} a^{11} - \frac{14}{29} a^{5} + \frac{12}{29} a^{3}$, $\frac{1}{1682} a^{12} - \frac{3}{1682} a^{10} + \frac{27}{1682} a^{8} + \frac{497}{1682} a^{6} - \frac{659}{1682} a^{4} - \frac{5}{58} a^{2} - \frac{1}{2}$, $\frac{1}{1682} a^{13} - \frac{3}{1682} a^{11} + \frac{27}{1682} a^{9} + \frac{497}{1682} a^{7} - \frac{659}{1682} a^{5} - \frac{5}{58} a^{3} - \frac{1}{2} a$, $\frac{1}{829226} a^{14} - \frac{3}{829226} a^{12} - \frac{12327}{829226} a^{10} + \frac{5717}{829226} a^{8} - \frac{395813}{829226} a^{6} + \frac{13985}{28594} a^{4} + \frac{287}{986} a^{2} - \frac{2}{17}$, $\frac{1}{1658452} a^{15} + \frac{245}{829226} a^{13} - \frac{1}{3364} a^{12} + \frac{3697}{414613} a^{11} + \frac{3}{3364} a^{10} - \frac{4783}{829226} a^{9} - \frac{27}{3364} a^{8} + \frac{53277}{829226} a^{7} + \frac{1185}{3364} a^{6} - \frac{2553}{28594} a^{5} - \frac{1023}{3364} a^{4} - \frac{375}{986} a^{3} + \frac{5}{116} a^{2} - \frac{21}{68} a + \frac{1}{4}$, $\frac{1}{319327613851324} a^{16} - \frac{775923}{12281831301974} a^{14} - \frac{1}{3364} a^{13} - \frac{11453804461}{79831903462831} a^{12} + \frac{3}{3364} a^{11} + \frac{68501541569}{159663806925662} a^{10} - \frac{27}{3364} a^{9} + \frac{2362976794039}{159663806925662} a^{8} + \frac{1185}{3364} a^{7} - \frac{12026101209}{423511424206} a^{6} - \frac{1023}{3364} a^{5} - \frac{85344224847}{189849948782} a^{4} + \frac{5}{116} a^{3} - \frac{2901771369}{13093099916} a^{2} + \frac{1}{4} a - \frac{24233808}{112871551}$, $\frac{1}{319327613851324} a^{17} - \frac{775923}{12281831301974} a^{15} - \frac{1}{1658452} a^{14} - \frac{11453804461}{79831903462831} a^{13} + \frac{3}{1658452} a^{12} + \frac{68501541569}{159663806925662} a^{11} - \frac{16267}{1658452} a^{10} + \frac{2362976794039}{159663806925662} a^{9} + \frac{22877}{1658452} a^{8} - \frac{12026101209}{423511424206} a^{7} - \frac{690759}{1658452} a^{6} - \frac{85344224847}{189849948782} a^{5} + \frac{22497}{57188} a^{4} - \frac{2901771369}{13093099916} a^{3} + \frac{665}{1972} a^{2} - \frac{24233808}{112871551} a + \frac{1}{17}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{1536}$, which has order $36864$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 252178.434124 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 40 conjugacy class representatives for t18n176 |
| Character table for t18n176 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.9800.1, 9.9.941192000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.24.244 | $x^{12} - 8 x^{11} + 4 x^{10} - 8 x^{9} - 14 x^{8} + 8 x^{7} + 8 x^{5} + 16 x^{3} - 8 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | $C_2^2 \times A_4$ | $[2, 2, 3]^{6}$ | |
| $5$ | 5.9.6.1 | $x^{9} - 25 x^{3} + 250$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.9.6.1 | $x^{9} - 25 x^{3} + 250$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 7 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |