Normalized defining polynomial
\( x^{18} + 18 x^{16} - 24 x^{15} + 147 x^{14} - 342 x^{13} + 996 x^{12} - 2514 x^{11} + 5586 x^{10} - 11958 x^{9} + 22581 x^{8} - 40962 x^{7} + 66838 x^{6} - 97902 x^{5} + 124314 x^{4} - 128200 x^{3} + 101529 x^{2} - 54078 x + 15931 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-74037208411275264000000000=-\,2^{27}\cdot 3^{24}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{89} a^{15} - \frac{24}{89} a^{14} + \frac{1}{89} a^{13} - \frac{21}{89} a^{12} + \frac{19}{89} a^{11} + \frac{31}{89} a^{10} - \frac{2}{89} a^{9} + \frac{19}{89} a^{8} + \frac{14}{89} a^{7} + \frac{43}{89} a^{6} + \frac{28}{89} a^{5} + \frac{18}{89} a^{4} + \frac{43}{89} a^{3} + \frac{41}{89} a^{2} + \frac{27}{89} a$, $\frac{1}{89} a^{16} - \frac{41}{89} a^{14} + \frac{3}{89} a^{13} - \frac{40}{89} a^{12} + \frac{42}{89} a^{11} + \frac{30}{89} a^{10} - \frac{29}{89} a^{9} + \frac{25}{89} a^{8} + \frac{23}{89} a^{7} - \frac{8}{89} a^{6} - \frac{22}{89} a^{5} + \frac{30}{89} a^{4} + \frac{5}{89} a^{3} + \frac{32}{89} a^{2} + \frac{25}{89} a$, $\frac{1}{129437747179102706621319986935447} a^{17} + \frac{525016406814843271359583372230}{129437747179102706621319986935447} a^{16} + \frac{675800082994899903280098733165}{129437747179102706621319986935447} a^{15} + \frac{4286731991021986245603864409563}{129437747179102706621319986935447} a^{14} - \frac{32900435922211943353563036956395}{129437747179102706621319986935447} a^{13} - \frac{19001293212048667777204980444361}{129437747179102706621319986935447} a^{12} - \frac{8344126639182351020389458086536}{129437747179102706621319986935447} a^{11} + \frac{54690244317339487934679739722559}{129437747179102706621319986935447} a^{10} + \frac{63828747761785578114745900451947}{129437747179102706621319986935447} a^{9} - \frac{15196567396685929106311910554959}{129437747179102706621319986935447} a^{8} + \frac{44648440423939747417838576978682}{129437747179102706621319986935447} a^{7} + \frac{61933210450767848879677985755773}{129437747179102706621319986935447} a^{6} + \frac{51248945856209130586240189099606}{129437747179102706621319986935447} a^{5} - \frac{2509984562783937226349748706232}{129437747179102706621319986935447} a^{4} + \frac{55022857254382930076454224012362}{129437747179102706621319986935447} a^{3} + \frac{35752188196901289686409900164569}{129437747179102706621319986935447} a^{2} - \frac{33840330289857636233590815944148}{129437747179102706621319986935447} a - \frac{2744762415288312275139862226}{8124897820545019560687966037}$
Class group and class number
$C_{14}$, which has order $14$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17326.71661590147 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\zeta_{9})^+\), 3.1.648.1, 6.0.419904000.3, 6.0.419904000.2, 9.3.272097792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |