Normalized defining polynomial
\( x^{18} - 2 x^{17} - 87 x^{16} + 1202 x^{15} - 2841 x^{14} - 80238 x^{13} + 1287658 x^{12} - 11262660 x^{11} + 70706700 x^{10} - 344420830 x^{9} + 1342940679 x^{8} - 4240439604 x^{7} + 10825160241 x^{6} - 22066150836 x^{5} + 35004517519 x^{4} - 41292548918 x^{3} + 33626242626 x^{2} - 16638384612 x + 3731618953 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-739970329848199945276026357888092034566758313984=-\,2^{12}\cdot 17^{9}\cdot 163^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $456.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a$, $\frac{1}{102} a^{12} + \frac{2}{51} a^{11} - \frac{2}{51} a^{10} + \frac{1}{102} a^{9} + \frac{2}{51} a^{8} + \frac{49}{102} a^{7} - \frac{8}{17} a^{6} - \frac{14}{51} a^{5} - \frac{11}{34} a^{4} - \frac{13}{102} a^{3} + \frac{43}{102} a^{2} + \frac{4}{17} a - \frac{5}{17}$, $\frac{1}{102} a^{13} - \frac{1}{34} a^{11} - \frac{3}{17} a^{8} + \frac{15}{34} a^{7} + \frac{15}{34} a^{6} - \frac{1}{17} a^{5} - \frac{1}{2} a^{4} - \frac{4}{17} a^{3} - \frac{2}{17} a^{2} - \frac{4}{17} a + \frac{35}{102}$, $\frac{1}{102} a^{14} - \frac{5}{102} a^{11} + \frac{5}{102} a^{10} + \frac{1}{51} a^{9} - \frac{11}{102} a^{8} + \frac{11}{51} a^{7} + \frac{1}{34} a^{6} - \frac{25}{51} a^{5} - \frac{19}{51} a^{4} - \frac{1}{6} a^{3} + \frac{10}{51} a^{2} + \frac{5}{102} a - \frac{11}{51}$, $\frac{1}{16626} a^{15} + \frac{2}{8313} a^{14} - \frac{25}{5542} a^{13} + \frac{10}{2771} a^{12} - \frac{530}{8313} a^{11} + \frac{1}{163} a^{10} - \frac{737}{16626} a^{9} + \frac{1673}{16626} a^{8} + \frac{2305}{8313} a^{7} + \frac{4585}{16626} a^{6} + \frac{845}{8313} a^{5} - \frac{108}{2771} a^{4} + \frac{2264}{8313} a^{3} - \frac{1205}{5542} a^{2} + \frac{1}{17} a + \frac{2233}{8313}$, $\frac{1}{32902854} a^{16} + \frac{1}{16451427} a^{15} - \frac{16178}{5483809} a^{14} + \frac{32053}{16451427} a^{13} + \frac{49513}{32902854} a^{12} + \frac{912770}{16451427} a^{11} + \frac{417706}{16451427} a^{10} + \frac{843575}{32902854} a^{9} + \frac{3001523}{10967618} a^{8} + \frac{15754205}{32902854} a^{7} - \frac{3373928}{16451427} a^{6} + \frac{8074636}{16451427} a^{5} + \frac{2379452}{16451427} a^{4} - \frac{5837965}{32902854} a^{3} + \frac{11779253}{32902854} a^{2} - \frac{2282125}{5483809} a - \frac{2471721}{10967618}$, $\frac{1}{59925551439075890566782331720316398919982} a^{17} + \frac{263358570710284100736957014651369}{29962775719537945283391165860158199459991} a^{16} + \frac{876377738550140047146478791239708311}{59925551439075890566782331720316398919982} a^{15} + \frac{127295733884165465057610293592091628423}{29962775719537945283391165860158199459991} a^{14} - \frac{204431256731871265384545942763911575629}{59925551439075890566782331720316398919982} a^{13} - \frac{175959064519022684436941199477942311785}{59925551439075890566782331720316398919982} a^{12} + \frac{4079212950307527172362381077120514711089}{59925551439075890566782331720316398919982} a^{11} + \frac{1653562952633966400926525351327546659726}{29962775719537945283391165860158199459991} a^{10} - \frac{4194972871714521434563410760166426825789}{59925551439075890566782331720316398919982} a^{9} + \frac{2601139261380973583775455376838718637941}{9987591906512648427797055286719399819997} a^{8} - \frac{2234781648774485510235082467727078459391}{59925551439075890566782331720316398919982} a^{7} - \frac{336072015040234525669548293280809822046}{9987591906512648427797055286719399819997} a^{6} - \frac{5996212996600255399019510243905655099695}{59925551439075890566782331720316398919982} a^{5} + \frac{5086252907388191689930922819968091264213}{19975183813025296855594110573438799639994} a^{4} + \frac{673943454916104417595204918736571947962}{9987591906512648427797055286719399819997} a^{3} - \frac{28570511944827435944932584984716175489587}{59925551439075890566782331720316398919982} a^{2} - \frac{13587576355648772671769977992016682913778}{29962775719537945283391165860158199459991} a - \frac{6318519589136950185843023769848941838704}{29962775719537945283391165860158199459991}$
Class group and class number
$C_{26}\times C_{1612}\times C_{30628}$, which has order $1283680736$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24241802.06091236 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-2771}) \), 3.1.11084.1 x3, 3.3.26569.1, 6.0.340431360176.1, Deg 6 x2, Deg 6, 9.3.961258003845861719744.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $163$ | 163.6.5.1 | $x^{6} - 163$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 163.6.5.1 | $x^{6} - 163$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 163.6.5.1 | $x^{6} - 163$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |