Normalized defining polynomial
\( x^{18} - 40 x^{16} + 594 x^{14} - 3680 x^{12} + 5497 x^{10} + 24616 x^{8} - 8076 x^{6} - 14240 x^{4} + 7232 x^{2} + 1024 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-737323196555695092066492350464=-\,2^{18}\cdot 109^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{80} a^{12} + \frac{1}{40} a^{10} - \frac{1}{16} a^{9} - \frac{3}{80} a^{8} - \frac{1}{8} a^{7} + \frac{3}{40} a^{6} + \frac{1}{16} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{160} a^{13} - \frac{3}{160} a^{11} - \frac{3}{160} a^{9} + \frac{11}{160} a^{7} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{3}{10} a^{3} + \frac{1}{4} a^{2} + \frac{2}{5} a$, $\frac{1}{160} a^{14} - \frac{1}{160} a^{12} + \frac{1}{160} a^{10} - \frac{1}{16} a^{9} + \frac{1}{32} a^{8} - \frac{1}{8} a^{7} - \frac{9}{80} a^{6} + \frac{1}{16} a^{5} + \frac{7}{40} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a - \frac{1}{5}$, $\frac{1}{320} a^{15} - \frac{1}{160} a^{11} + \frac{3}{80} a^{9} + \frac{13}{320} a^{7} + \frac{17}{80} a^{5} + \frac{37}{80} a^{3} - \frac{3}{20} a$, $\frac{1}{36437286686720} a^{16} + \frac{3448086553}{1821864334336} a^{14} - \frac{31790269823}{18218643343360} a^{12} + \frac{100288727643}{4554660835840} a^{10} - \frac{1}{16} a^{9} - \frac{8766802683}{7287457337344} a^{8} - \frac{1}{8} a^{7} - \frac{438402802439}{9109321671680} a^{6} - \frac{3}{16} a^{5} - \frac{760059210663}{9109321671680} a^{4} - \frac{1}{8} a^{3} - \frac{97701565007}{455466083584} a^{2} + \frac{56172277689}{142333151120}$, $\frac{1}{72874573373440} a^{17} + \frac{3448086553}{3643728668672} a^{15} - \frac{31790269823}{36437286686720} a^{13} - \frac{184377574597}{9109321671680} a^{11} - \frac{8766802683}{14574914674688} a^{9} - \frac{2146400615879}{18218643343360} a^{7} - \frac{3037389628583}{18218643343360} a^{5} + \frac{357764518577}{910932167168} a^{3} + \frac{56172277689}{284666302240} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{11881}{90528320} a^{17} - \frac{96619}{18105664} a^{15} + \frac{736173}{9052832} a^{13} - \frac{23996537}{45264160} a^{11} + \frac{88269597}{90528320} a^{9} + \frac{57438081}{18105664} a^{7} - \frac{44402119}{11316040} a^{5} - \frac{77347503}{22632080} a^{3} + \frac{14607663}{5658020} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3674078577.57 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.47524.1 x3, 3.3.11881.1, 6.0.9034122304.1, 6.0.760384.2 x2, 6.0.9034122304.2, 9.3.107334407093824.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.760384.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $109$ | 109.9.6.1 | $x^{9} + 3270 x^{6} + 3552419 x^{3} + 1295029000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 109.9.6.1 | $x^{9} + 3270 x^{6} + 3552419 x^{3} + 1295029000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |