Normalized defining polynomial
\( x^{18} + 530694 x^{12} + 13431802185 x^{6} + 23917744283328 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-733114560372703860308311985400170653539593347139329480594827=-\,3^{27}\cdot 19^{12}\cdot 433^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2117.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 433$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{18} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{882} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{2} - \frac{143}{294} a$, $\frac{1}{1764} a^{8} - \frac{143}{588} a^{2}$, $\frac{1}{7056} a^{9} + \frac{1033}{2352} a^{3} - \frac{1}{2}$, $\frac{1}{14112} a^{10} - \frac{1}{1764} a^{7} - \frac{1}{6} a^{5} - \frac{143}{4704} a^{4} - \frac{1}{2} a^{2} - \frac{151}{588} a$, $\frac{1}{84672} a^{11} - \frac{1}{3528} a^{8} + \frac{6913}{28224} a^{5} + \frac{1}{3} a^{3} - \frac{445}{1176} a^{2}$, $\frac{1}{73815525504} a^{12} + \frac{1}{42336} a^{10} - \frac{1}{1764} a^{7} + \frac{99805409}{24605175168} a^{6} - \frac{1}{6} a^{5} + \frac{2209}{14112} a^{4} - \frac{1}{6} a^{2} + \frac{143}{588} a - \frac{705749}{2615346}$, $\frac{1}{73815525504} a^{13} - \frac{240463}{502146432} a^{7} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{41555957}{128151954} a$, $\frac{1}{3616960749696} a^{14} + \frac{211393505}{1205653583232} a^{8} + \frac{1}{6} a^{4} - \frac{2462494571}{6279445746} a^{2} - \frac{1}{2} a$, $\frac{1}{354462153470208} a^{15} - \frac{1}{147631051008} a^{12} + \frac{1}{42336} a^{10} - \frac{813822127}{118154051156736} a^{9} - \frac{1}{1764} a^{7} - \frac{99805409}{49210350336} a^{6} + \frac{1}{6} a^{5} + \frac{2209}{14112} a^{4} + \frac{978906422803}{2461542732432} a^{3} - \frac{1}{6} a^{2} + \frac{143}{588} a + \frac{705749}{5230692}$, $\frac{1}{52105936560120576} a^{16} - \frac{1}{147631051008} a^{13} - \frac{402698349871}{17368645520040192} a^{10} - \frac{1}{5292} a^{8} + \frac{240463}{1004292864} a^{7} - \frac{1}{6} a^{5} - \frac{7736964272645}{361846781667504} a^{4} - \frac{1}{3} a^{3} - \frac{739}{1764} a^{2} + \frac{41555957}{256303908} a + \frac{1}{3}$, $\frac{1}{2553190891445908224} a^{17} - \frac{1}{7233921499392} a^{14} + \frac{3905001431885}{851063630481969408} a^{11} - \frac{1}{21168} a^{9} + \frac{472083583}{2411307166464} a^{8} - \frac{7783730539305941}{70921969206830784} a^{5} + \frac{1}{6} a^{4} - \frac{3385}{7056} a^{3} - \frac{10688190587}{25117782984} a^{2} - \frac{1}{6} a - \frac{1}{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{21}\times C_{63}\times C_{126}\times C_{378}$, which has order $45935634276$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{820514244144} a^{15} + \frac{270149}{410257122072} a^{9} + \frac{5741797263}{273504748048} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81466624347417.27 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.203050587.2 x3, 3.3.5482365849.1, 6.0.123688622643133707.1, 6.0.1332214901307.1 x2, 6.0.90169005906844472403.1, 9.3.494339478621963410856630165147.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $19$ | 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 433 | Data not computed | ||||||