Properties

Label 18.0.72781537356...2256.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{33}\cdot 3^{25}$
Root discriminant $16.39$
Ramified primes $2, 3$
Class number $2$
Class group $[2]$
Galois group $S_3^2$ (as 18T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6, 0, 36, 0, 36, 0, -27, 0, -66, 0, 3, 0, 24, 0, 3, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 3*x^14 + 24*x^12 + 3*x^10 - 66*x^8 - 27*x^6 + 36*x^4 + 36*x^2 + 6)
 
gp: K = bnfinit(x^18 + 3*x^14 + 24*x^12 + 3*x^10 - 66*x^8 - 27*x^6 + 36*x^4 + 36*x^2 + 6, 1)
 

Normalized defining polynomial

\( x^{18} + 3 x^{14} + 24 x^{12} + 3 x^{10} - 66 x^{8} - 27 x^{6} + 36 x^{4} + 36 x^{2} + 6 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-7278153735662003552256=-\,2^{33}\cdot 3^{25}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{3}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{1}{2} a^{8} + \frac{3}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{272} a^{14} - \frac{3}{136} a^{12} - \frac{1}{4} a^{11} - \frac{3}{136} a^{10} - \frac{5}{136} a^{8} + \frac{1}{4} a^{7} + \frac{129}{272} a^{6} + \frac{43}{136} a^{4} - \frac{3}{34} a^{2} - \frac{1}{2} a + \frac{59}{136}$, $\frac{1}{272} a^{15} - \frac{3}{136} a^{13} - \frac{3}{136} a^{11} - \frac{1}{4} a^{10} - \frac{5}{136} a^{9} - \frac{1}{2} a^{8} + \frac{129}{272} a^{7} - \frac{1}{4} a^{6} + \frac{43}{136} a^{5} - \frac{3}{34} a^{3} + \frac{59}{136} a - \frac{1}{2}$, $\frac{1}{6256} a^{16} - \frac{3}{3128} a^{14} + \frac{31}{3128} a^{12} - \frac{1}{4} a^{11} - \frac{243}{3128} a^{10} + \frac{2781}{6256} a^{8} + \frac{1}{4} a^{7} - \frac{671}{3128} a^{6} + \frac{201}{782} a^{4} - \frac{689}{3128} a^{2} - \frac{1}{2} a + \frac{11}{46}$, $\frac{1}{12512} a^{17} - \frac{1}{12512} a^{16} + \frac{1}{736} a^{15} - \frac{1}{736} a^{14} - \frac{19}{3128} a^{13} + \frac{19}{3128} a^{12} + \frac{313}{1564} a^{11} + \frac{39}{782} a^{10} + \frac{2551}{12512} a^{9} + \frac{3705}{12512} a^{8} + \frac{4753}{12512} a^{7} + \frac{4631}{12512} a^{6} + \frac{1793}{6256} a^{5} - \frac{1793}{6256} a^{4} - \frac{965}{6256} a^{3} + \frac{965}{6256} a^{2} + \frac{2105}{6256} a + \frac{1023}{6256}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10601.880683444891 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3^2$ (as 18T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 9 conjugacy class representatives for $S_3^2$
Character table for $S_3^2$

Intermediate fields

\(\Q(\sqrt{-6}) \), 3.1.216.1 x3, 3.1.108.1, 6.0.4478976.2, 6.0.1119744.1, 9.1.4353564672.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed
Degree 9 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.11.5$x^{6} + 6$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
2.6.11.5$x^{6} + 6$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
2.6.11.5$x^{6} + 6$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
3Data not computed