Normalized defining polynomial
\( x^{18} - x^{17} + 14 x^{16} + 17 x^{15} + 123 x^{14} + 149 x^{13} + 565 x^{12} + 814 x^{11} + 1779 x^{10} + 1863 x^{9} + 2434 x^{8} + 1956 x^{7} + 2058 x^{6} + 1369 x^{5} + 766 x^{4} + 264 x^{3} + 69 x^{2} + 10 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-726566512595229689293941092352=-\,2^{12}\cdot 3^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{65749} a^{15} - \frac{5332}{65749} a^{14} + \frac{16007}{65749} a^{13} + \frac{25341}{65749} a^{12} - \frac{25201}{65749} a^{11} + \frac{24163}{65749} a^{10} + \frac{25809}{65749} a^{9} - \frac{25962}{65749} a^{8} + \frac{11634}{65749} a^{7} + \frac{13710}{65749} a^{6} + \frac{2314}{65749} a^{5} + \frac{26758}{65749} a^{4} + \frac{14500}{65749} a^{3} - \frac{9686}{65749} a^{2} - \frac{24376}{65749} a + \frac{30970}{65749}$, $\frac{1}{65749} a^{16} - \frac{10649}{65749} a^{14} + \frac{32463}{65749} a^{13} - \frac{21184}{65749} a^{12} - \frac{22362}{65749} a^{11} - \frac{5115}{65749} a^{10} - \frac{25031}{65749} a^{9} - \frac{16105}{65749} a^{8} - \frac{20858}{65749} a^{7} - \frac{8854}{65749} a^{6} + \frac{4194}{65749} a^{5} + \frac{12826}{65749} a^{4} - \frac{16510}{65749} a^{3} + \frac{8586}{65749} a^{2} - \frac{21838}{65749} a - \frac{29448}{65749}$, $\frac{1}{7361323789} a^{17} + \frac{50244}{7361323789} a^{16} + \frac{13166}{7361323789} a^{15} - \frac{485066914}{7361323789} a^{14} - \frac{2662234411}{7361323789} a^{13} - \frac{21332628}{71469163} a^{12} + \frac{2032254116}{7361323789} a^{11} + \frac{2571505486}{7361323789} a^{10} + \frac{3282051468}{7361323789} a^{9} - \frac{514626392}{7361323789} a^{8} + \frac{1998018890}{7361323789} a^{7} - \frac{3612714635}{7361323789} a^{6} + \frac{1592330147}{7361323789} a^{5} - \frac{1532665392}{7361323789} a^{4} + \frac{2777868532}{7361323789} a^{3} - \frac{7710804}{71469163} a^{2} + \frac{1942367580}{7361323789} a - \frac{2773415866}{7361323789}$
Class group and class number
$C_{3}\times C_{6}\times C_{6}$, which has order $108$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1350662074}{7361323789} a^{17} + \frac{1551632519}{7361323789} a^{16} - \frac{19168353112}{7361323789} a^{15} - \frac{20077037170}{7361323789} a^{14} - \frac{163553918972}{7361323789} a^{13} - \frac{1721605119}{71469163} a^{12} - \frac{740295754360}{7361323789} a^{11} - \frac{26842502770}{198954697} a^{10} - \frac{2271696792466}{7361323789} a^{9} - \frac{2200311098785}{7361323789} a^{8} - \frac{3012608895078}{7361323789} a^{7} - \frac{2246037552002}{7361323789} a^{6} - \frac{2522699684024}{7361323789} a^{5} - \frac{1531437507749}{7361323789} a^{4} - \frac{872110497300}{7361323789} a^{3} - \frac{2532268388}{71469163} a^{2} - \frac{80240135046}{7361323789} a - \frac{4330194133}{7361323789} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.148.1, 3.3.1369.1, 6.0.591408.1, 6.0.50602347.1, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |