Normalized defining polynomial
\( x^{18} - 9 x^{17} + 90 x^{16} - 504 x^{15} + 2844 x^{14} - 11700 x^{13} + 47256 x^{12} - 153774 x^{11} + 480933 x^{10} - 1269783 x^{9} + 3159846 x^{8} - 6738858 x^{7} + 13325322 x^{6} - 23140440 x^{5} + 36128628 x^{4} - 42759972 x^{3} + 43262136 x^{2} - 33133680 x + 16877600 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7265168307811659818615258509987442688=-\,2^{12}\cdot 3^{44}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{12} a^{8} - \frac{1}{4} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{4} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{13} - \frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{24} a^{9} + \frac{1}{8} a^{8} + \frac{1}{24} a^{7} + \frac{1}{6} a^{6} + \frac{5}{12} a^{5} + \frac{5}{12} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{15} + \frac{1}{6} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{816} a^{16} - \frac{1}{102} a^{15} + \frac{7}{408} a^{14} - \frac{7}{408} a^{13} - \frac{13}{408} a^{12} - \frac{5}{136} a^{11} + \frac{1}{24} a^{10} + \frac{19}{204} a^{9} + \frac{113}{816} a^{8} - \frac{55}{408} a^{7} - \frac{5}{204} a^{6} + \frac{21}{136} a^{5} + \frac{19}{51} a^{4} + \frac{25}{51} a^{3} - \frac{13}{204} a^{2} + \frac{35}{102} a - \frac{1}{3}$, $\frac{1}{27326880793465094285098618900431546226770011372400} a^{17} - \frac{7276452651058209638721669155658748842940325869}{27326880793465094285098618900431546226770011372400} a^{16} - \frac{1175713206033504266933594413155773893802936948}{113862003306104559521244245418464775944875047385} a^{15} + \frac{14924748312252011228813957860250476569722956983}{2277240066122091190424884908369295518897500947700} a^{14} + \frac{6316670401607560857574046559563037706590264674}{1707930049591568392818663681276971639173125710775} a^{13} + \frac{18190213999609688981147385267023654677990015221}{455448013224418238084976981673859103779500189540} a^{12} - \frac{341963860468735672136722398048447009730875293311}{6831720198366273571274654725107886556692502843100} a^{11} - \frac{1061981438278164961997992609026541276386016520167}{13663440396732547142549309450215773113385005686200} a^{10} + \frac{4280502665469330598873703502552304855365320948473}{27326880793465094285098618900431546226770011372400} a^{9} - \frac{6409285763632093280021184514499424069251088312463}{27326880793465094285098618900431546226770011372400} a^{8} - \frac{175234428893545787971987894983260701208140515327}{2277240066122091190424884908369295518897500947700} a^{7} - \frac{1708930221783085515613687300843275186011398854359}{13663440396732547142549309450215773113385005686200} a^{6} - \frac{2255852675839186653974739033484905916292484460233}{4554480132244182380849769816738591037795001895400} a^{5} - \frac{67267975432454655375386174746884592416003891611}{455448013224418238084976981673859103779500189540} a^{4} - \frac{3344354998337815393052165396695816910256407986993}{6831720198366273571274654725107886556692502843100} a^{3} + \frac{2302396204699410052993232539414449114715362945787}{6831720198366273571274654725107886556692502843100} a^{2} - \frac{553740084639482399733772260189260757749616667934}{1707930049591568392818663681276971639173125710775} a - \frac{1614609360336241941564451190691237441187548014}{20093294701077275209631337426787901637330890715}$
Class group and class number
$C_{36}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36522830000.442375 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.243.1, 6.0.718449183.1, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.9.22.46 | $x^{9} + 18 x^{5} + 3$ | $9$ | $1$ | $22$ | $C_3^2 : C_6$ | $[2, 5/2, 17/6]_{2}$ |
| 3.9.22.46 | $x^{9} + 18 x^{5} + 3$ | $9$ | $1$ | $22$ | $C_3^2 : C_6$ | $[2, 5/2, 17/6]_{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |