Normalized defining polynomial
\( x^{18} - 8 x^{17} + 24 x^{16} - 23 x^{15} + 40 x^{14} - 380 x^{13} + 1228 x^{12} - 1433 x^{11} + 1810 x^{10} - 8213 x^{9} + 24013 x^{8} - 34802 x^{7} + 62185 x^{6} - 114144 x^{5} + 281649 x^{4} - 476930 x^{3} + 979440 x^{2} - 520209 x + 692091 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7262160664015682731094650299851=-\,7^{14}\cdot 67^{6}\cdot 491^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 67, 491$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{15} a^{16} + \frac{1}{15} a^{15} + \frac{2}{5} a^{14} + \frac{7}{15} a^{13} - \frac{2}{15} a^{12} + \frac{7}{15} a^{11} - \frac{2}{15} a^{10} - \frac{2}{15} a^{9} + \frac{1}{15} a^{8} + \frac{4}{15} a^{7} - \frac{2}{15} a^{6} - \frac{2}{15} a^{5} + \frac{1}{15} a^{4} + \frac{1}{5} a^{3} - \frac{1}{3} a - \frac{1}{5}$, $\frac{1}{55118909347946594930367461727691109054813485935} a^{17} - \frac{154210937358493010669866206446623584852324173}{55118909347946594930367461727691109054813485935} a^{16} + \frac{1295271068597940977032807978809007456931190799}{18372969782648864976789153909230369684937828645} a^{15} + \frac{7724043368958001739582653224322792794050320933}{55118909347946594930367461727691109054813485935} a^{14} + \frac{3481119813035638446546356318884561145288699753}{11023781869589318986073492345538221810962697187} a^{13} - \frac{4341818053564672778105950884252801571612907203}{11023781869589318986073492345538221810962697187} a^{12} - \frac{338092969406137935699888938499180732268477810}{11023781869589318986073492345538221810962697187} a^{11} - \frac{998251896937706810449261159529718439711846844}{55118909347946594930367461727691109054813485935} a^{10} + \frac{184152995517188219989708323739299774060986704}{55118909347946594930367461727691109054813485935} a^{9} + \frac{844848910320021279860893031191229098067647370}{11023781869589318986073492345538221810962697187} a^{8} - \frac{7378929668648955285416958129452069600183789753}{55118909347946594930367461727691109054813485935} a^{7} + \frac{26035799511042148316989769423063723962724335756}{55118909347946594930367461727691109054813485935} a^{6} + \frac{8857084998738939812093716532936454986491397149}{55118909347946594930367461727691109054813485935} a^{5} - \frac{2503698953516591254246500860735730331711643139}{6124323260882954992263051303076789894979276215} a^{4} + \frac{7239669386420663470363510789884314201828385676}{18372969782648864976789153909230369684937828645} a^{3} + \frac{1402328055281184043660480320352770273217729949}{11023781869589318986073492345538221810962697187} a^{2} - \frac{6616412802962199624070081395139859782851393731}{18372969782648864976789153909230369684937828645} a + \frac{1169054893270528972567038061138834231528248153}{6124323260882954992263051303076789894979276215}$
Class group and class number
$C_{2}\times C_{298}$, which has order $596$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 122519.134308 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3\times A_4$ (as 18T60):
| A solvable group of order 144 |
| The 24 conjugacy class representatives for $C_2\times S_3\times A_4$ |
| Character table for $C_2\times S_3\times A_4$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.469.1, 6.0.1178891.1, 9.9.247691263309.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $67$ | 67.6.0.1 | $x^{6} + x^{2} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 67.12.6.1 | $x^{12} + 8978 x^{8} + 7218312 x^{6} + 20151121 x^{4} + 31052877461 x^{2} + 13026007032336$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 491 | Data not computed | ||||||