Normalized defining polynomial
\( x^{18} - 6 x^{17} + 3 x^{16} + 40 x^{15} - 3 x^{14} - 438 x^{13} + 1141 x^{12} + 126 x^{11} + 3081 x^{10} - 444 x^{9} + 14067 x^{8} + 28818 x^{7} + 68469 x^{6} + 96822 x^{5} + 113724 x^{4} + 94392 x^{3} + 60912 x^{2} + 23328 x + 5184 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-725588521883853198293196716319=-\,3^{27}\cdot 7^{9}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{9} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{10} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{36} a^{14} - \frac{1}{12} a^{12} + \frac{1}{9} a^{11} + \frac{1}{12} a^{10} + \frac{1}{6} a^{9} + \frac{7}{36} a^{8} + \frac{1}{6} a^{7} + \frac{5}{12} a^{6} + \frac{1}{6} a^{5} - \frac{1}{4} a^{4} - \frac{1}{12} a^{2}$, $\frac{1}{936} a^{15} + \frac{1}{78} a^{14} + \frac{7}{104} a^{13} + \frac{29}{468} a^{12} - \frac{61}{312} a^{11} + \frac{3}{13} a^{10} + \frac{205}{936} a^{9} - \frac{3}{13} a^{8} - \frac{7}{104} a^{7} - \frac{17}{156} a^{6} + \frac{11}{104} a^{5} + \frac{4}{13} a^{4} - \frac{61}{312} a^{3} + \frac{5}{13} a^{2} + \frac{1}{26} a + \frac{3}{13}$, $\frac{1}{120704688} a^{16} + \frac{2983}{6705816} a^{15} + \frac{169873}{40234896} a^{14} + \frac{2029195}{30176172} a^{13} - \frac{3182633}{40234896} a^{12} + \frac{601673}{20117448} a^{11} - \frac{21276803}{120704688} a^{10} - \frac{2700353}{20117448} a^{9} + \frac{2373211}{40234896} a^{8} - \frac{553793}{5029362} a^{7} + \frac{1247641}{4470544} a^{6} - \frac{103417}{6705816} a^{5} + \frac{15996815}{40234896} a^{4} + \frac{815249}{6705816} a^{3} - \frac{489901}{1117636} a^{2} - \frac{13739}{279409} a - \frac{81969}{279409}$, $\frac{1}{8998483755824434864710735264} a^{17} + \frac{1686612044265885577}{2249620938956108716177683816} a^{16} + \frac{248004019842617190495305}{2999494585274811621570245088} a^{15} + \frac{42656507843055648312284615}{4499241877912217432355367632} a^{14} - \frac{353747693803372190816120711}{8998483755824434864710735264} a^{13} + \frac{8755127886735387752132767}{249957882106234301797520424} a^{12} + \frac{885602993777792760467510413}{8998483755824434864710735264} a^{11} + \frac{58365417291371323968216323}{1124810469478054358088841908} a^{10} + \frac{77680522205000777212645459}{2999494585274811621570245088} a^{9} - \frac{4622545398509484407848043}{115365176356723523906547888} a^{8} - \frac{696359436751309860943347883}{2999494585274811621570245088} a^{7} - \frac{14732532810470248242849800}{31244735263279287724690053} a^{6} + \frac{455787547456187483223933911}{2999494585274811621570245088} a^{5} - \frac{80492881054199794542858289}{187468411579675726348140318} a^{4} - \frac{27690059634899928859339831}{83319294035411433932506808} a^{3} + \frac{41855273625961222815192107}{124978941053117150898760212} a^{2} + \frac{1577000076370896385058795}{20829823508852858483126702} a + \frac{1281666284346300786144709}{10414911754426429241563351}$
Class group and class number
$C_{3}\times C_{6}\times C_{18}$, which has order $324$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 429572.316092 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), 3.1.231.1 x3, \(\Q(\zeta_{9})^+\), 6.0.12326391.1, 6.0.8985939039.8, 6.0.8985939039.4 x2, 9.3.727861062159.3 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |