Properties

Label 18.0.72436308017...1552.6
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{27}\cdot 3^{44}\cdot 19^{17}$
Root discriminant $669.20$
Ramified primes $2, 3, 19$
Class number $2442523734$ (GRH)
Class group $[9, 271391526]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14550451712, 0, 69983771904, 0, 81048287232, 0, 31999796352, 0, 4682204352, 0, 313986096, 0, 10156944, 0, 145692, 0, 684, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 684*x^16 + 145692*x^14 + 10156944*x^12 + 313986096*x^10 + 4682204352*x^8 + 31999796352*x^6 + 81048287232*x^4 + 69983771904*x^2 + 14550451712)
 
gp: K = bnfinit(x^18 + 684*x^16 + 145692*x^14 + 10156944*x^12 + 313986096*x^10 + 4682204352*x^8 + 31999796352*x^6 + 81048287232*x^4 + 69983771904*x^2 + 14550451712, 1)
 

Normalized defining polynomial

\( x^{18} + 684 x^{16} + 145692 x^{14} + 10156944 x^{12} + 313986096 x^{10} + 4682204352 x^{8} + 31999796352 x^{6} + 81048287232 x^{4} + 69983771904 x^{2} + 14550451712 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-724363080171793764995208566309796540433577438871552=-\,2^{27}\cdot 3^{44}\cdot 19^{17}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $669.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4104=2^{3}\cdot 3^{3}\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{4104}(1,·)$, $\chi_{4104}(3397,·)$, $\chi_{4104}(577,·)$, $\chi_{4104}(3265,·)$, $\chi_{4104}(1933,·)$, $\chi_{4104}(13,·)$, $\chi_{4104}(3157,·)$, $\chi_{4104}(1849,·)$, $\chi_{4104}(2137,·)$, $\chi_{4104}(2461,·)$, $\chi_{4104}(3937,·)$, $\chi_{4104}(169,·)$, $\chi_{4104}(1405,·)$, $\chi_{4104}(3121,·)$, $\chi_{4104}(3637,·)$, $\chi_{4104}(505,·)$, $\chi_{4104}(3517,·)$, $\chi_{4104}(2197,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{156544} a^{15} - \frac{529}{78272} a^{13} - \frac{579}{39136} a^{11} + \frac{577}{19568} a^{9} - \frac{41}{9784} a^{7} - \frac{295}{2446} a^{5} + \frac{202}{1223} a^{3} + \frac{179}{1223} a$, $\frac{1}{247235226298755706361612377917717768448} a^{16} - \frac{30205739758914087225065445385537531}{15452201643672231647600773619857360528} a^{14} + \frac{79470886894272670700350289035173107}{61808806574688926590403094479429442112} a^{12} + \frac{149200454790906762864858099124611215}{30904403287344463295201547239714721056} a^{10} - \frac{294387531887214918474643619445427693}{15452201643672231647600773619857360528} a^{8} - \frac{377013121243007214785072914714745985}{7726100821836115823800386809928680264} a^{6} + \frac{55649335023325373249384575584497380}{965762602729514477975048351241085033} a^{4} - \frac{79830856427952728772069462000027890}{965762602729514477975048351241085033} a^{2} - \frac{26776916925545949079546845484586}{789666886941549041680333893083471}$, $\frac{1}{247235226298755706361612377917717768448} a^{17} - \frac{3925333599345523170695900379061}{61808806574688926590403094479429442112} a^{15} - \frac{266403209586125809555635956135387191}{61808806574688926590403094479429442112} a^{13} + \frac{138168411794248079287695927955525023}{15452201643672231647600773619857360528} a^{11} + \frac{60962567236482150281506632442134257}{15452201643672231647600773619857360528} a^{9} + \frac{84803686303244441504747481577990553}{1931525205459028955950096702482170066} a^{7} - \frac{376759827095334229637835122512364969}{3863050410918057911900193404964340132} a^{5} - \frac{79905357274809004334425200798625209}{1931525205459028955950096702482170066} a^{3} - \frac{238851226891686995602852938122434609}{965762602729514477975048351241085033} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{9}\times C_{271391526}$, which has order $2442523734$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 658443956.5015022 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-38}) \), 3.3.29241.2, 6.0.8317790995968.4, 9.9.532962204162830310969.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ $18$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ $18$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{18}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.9.22.5$x^{9} + 9 x^{8} + 12 x^{6} + 18 x^{5} + 9 x^{3} + 60$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.5$x^{9} + 9 x^{8} + 12 x^{6} + 18 x^{5} + 9 x^{3} + 60$$9$$1$$22$$C_9$$[2, 3]$
19Data not computed