Normalized defining polynomial
\( x^{18} + 684 x^{16} + 182628 x^{14} + 25307544 x^{12} + 2016760320 x^{10} + 95935104000 x^{8} + 2718287880192 x^{6} + 44181664137216 x^{4} + 376568116936704 x^{2} + 1297774555430912 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-724363080171793764995208566309796540433577438871552=-\,2^{27}\cdot 3^{44}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $669.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4104=2^{3}\cdot 3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4104}(1,·)$, $\chi_{4104}(901,·)$, $\chi_{4104}(1993,·)$, $\chi_{4104}(1873,·)$, $\chi_{4104}(2389,·)$, $\chi_{4104}(313,·)$, $\chi_{4104}(3481,·)$, $\chi_{4104}(829,·)$, $\chi_{4104}(925,·)$, $\chi_{4104}(2245,·)$, $\chi_{4104}(2353,·)$, $\chi_{4104}(2941,·)$, $\chi_{4104}(3313,·)$, $\chi_{4104}(2761,·)$, $\chi_{4104}(3577,·)$, $\chi_{4104}(637,·)$, $\chi_{4104}(1405,·)$, $\chi_{4104}(1237,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{1664} a^{9} + \frac{3}{416} a^{7} - \frac{3}{32} a^{5} - \frac{21}{208} a^{3} - \frac{6}{13} a$, $\frac{1}{6656} a^{10} + \frac{3}{1664} a^{8} - \frac{3}{128} a^{6} + \frac{83}{832} a^{4} - \frac{3}{26} a^{2}$, $\frac{1}{13312} a^{11} - \frac{1}{3328} a^{9} - \frac{87}{3328} a^{7} + \frac{187}{1664} a^{5} + \frac{15}{104} a^{3} - \frac{1}{13} a$, $\frac{1}{212992} a^{12} - \frac{1}{53248} a^{10} + \frac{121}{53248} a^{8} + \frac{1019}{26624} a^{6} + \frac{41}{1664} a^{4} - \frac{41}{416} a^{2} + \frac{1}{4}$, $\frac{1}{425984} a^{13} - \frac{1}{106496} a^{11} - \frac{7}{106496} a^{9} + \frac{251}{53248} a^{7} - \frac{167}{3328} a^{5} - \frac{81}{832} a^{3} + \frac{5}{104} a$, $\frac{1}{1703936} a^{14} - \frac{1}{425984} a^{12} - \frac{7}{425984} a^{10} + \frac{251}{212992} a^{8} - \frac{167}{13312} a^{6} - \frac{81}{3328} a^{4} + \frac{5}{416} a^{2}$, $\frac{1}{1496055808} a^{15} - \frac{5}{374013952} a^{13} + \frac{9}{374013952} a^{11} - \frac{28621}{187006976} a^{9} + \frac{117903}{5843968} a^{7} + \frac{101883}{2921984} a^{5} - \frac{1801}{28096} a^{3} + \frac{939}{22828} a$, $\frac{1}{1029446469540782137769743876096} a^{16} - \frac{4825030684703736800563}{257361617385195534442435969024} a^{14} + \frac{31226822032042108009365}{19797047491168887264802766848} a^{12} + \frac{4202734638361359928472343}{128680808692597767221217984512} a^{10} - \frac{117466289850373949433462525}{16085101086574720902652248064} a^{8} - \frac{477043405299178582387009}{38666108381189232939067904} a^{6} - \frac{523603036900149068142179}{62832426119432503525985344} a^{4} - \frac{1903259454516918486375331}{15708106529858125881496336} a^{2} - \frac{17435511272841724197}{52931307469430678524}$, $\frac{1}{2058892939081564275539487752192} a^{17} - \frac{8281704985545054879}{514723234770391068884871938048} a^{15} + \frac{23816438986321813016005}{39594094982337774529605533696} a^{13} + \frac{4289436119996287379894655}{257361617385195534442435969024} a^{11} + \frac{6934165781315032285266113}{32170202173149441805304496128} a^{9} - \frac{158240179247914498642015}{5948632058644497375241216} a^{7} + \frac{11682257292349953099622033}{251329704477730014103941376} a^{5} - \frac{854601824624159547736521}{3927026632464531470374084} a^{3} - \frac{123376482502820956006603}{604157943456081764672936} a$
Class group and class number
$C_{2}\times C_{36}\times C_{36763092}$, which has order $2646942624$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1907649489.937839 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-38}) \), 3.3.29241.1, 6.0.8317790995968.2, 9.9.532962204162830310969.10 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.9.22.7 | $x^{9} + 18 x^{8} + 9 x^{7} + 21 x^{6} + 18 x^{5} + 42$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.7 | $x^{9} + 18 x^{8} + 9 x^{7} + 21 x^{6} + 18 x^{5} + 42$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 19 | Data not computed | ||||||