Normalized defining polynomial
\( x^{18} + 684 x^{16} + 182628 x^{14} + 24322584 x^{12} + 1730990592 x^{10} + 66282292224 x^{8} + 1283370835968 x^{6} + 10319094448128 x^{4} + 17155059351552 x^{2} + 8032970866688 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-724363080171793764995208566309796540433577438871552=-\,2^{27}\cdot 3^{44}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $669.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4104=2^{3}\cdot 3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4104}(1,·)$, $\chi_{4104}(901,·)$, $\chi_{4104}(205,·)$, $\chi_{4104}(1681,·)$, $\chi_{4104}(2005,·)$, $\chi_{4104}(985,·)$, $\chi_{4104}(25,·)$, $\chi_{4104}(829,·)$, $\chi_{4104}(3973,·)$, $\chi_{4104}(2209,·)$, $\chi_{4104}(625,·)$, $\chi_{4104}(745,·)$, $\chi_{4104}(877,·)$, $\chi_{4104}(1021,·)$, $\chi_{4104}(3313,·)$, $\chi_{4104}(2293,·)$, $\chi_{4104}(1405,·)$, $\chi_{4104}(1873,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{128} a^{9} - \frac{1}{32} a^{7} + \frac{1}{32} a^{5} + \frac{3}{16} a^{3}$, $\frac{1}{512} a^{10} - \frac{1}{128} a^{8} - \frac{7}{128} a^{6} - \frac{5}{64} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{1024} a^{11} - \frac{1}{256} a^{9} - \frac{7}{256} a^{7} + \frac{11}{128} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16384} a^{12} - \frac{1}{4096} a^{10} - \frac{7}{4096} a^{8} + \frac{11}{2048} a^{6} + \frac{9}{128} a^{4} - \frac{1}{32} a^{2} + \frac{1}{4}$, $\frac{1}{32768} a^{13} - \frac{1}{8192} a^{11} - \frac{7}{8192} a^{9} + \frac{11}{4096} a^{7} - \frac{23}{256} a^{5} - \frac{1}{64} a^{3} - \frac{3}{8} a$, $\frac{1}{22675456} a^{14} - \frac{27}{5668864} a^{12} + \frac{3233}{5668864} a^{10} - \frac{9225}{2834432} a^{8} - \frac{12845}{354304} a^{6} - \frac{111}{44288} a^{4} + \frac{443}{2768} a^{2} + \frac{99}{692}$, $\frac{1}{20362559488} a^{15} - \frac{61269}{5090639872} a^{13} - \frac{2110135}{5090639872} a^{11} + \frac{1888931}{2545319936} a^{9} - \frac{2205631}{79541248} a^{7} - \frac{4362133}{39770624} a^{5} + \frac{607943}{4971328} a^{3} - \frac{76503}{310708} a$, $\frac{1}{36248827338585617863595765149990912} a^{16} - \frac{83814519871388614363362127}{9062206834646404465898941287497728} a^{14} - \frac{18692694484137321268604228911}{9062206834646404465898941287497728} a^{12} - \frac{2747274059141192748643725932785}{4531103417323202232949470643748864} a^{10} + \frac{2276124769638794616973532810829}{566387927165400279118683830468608} a^{8} + \frac{1526840969153677882779953459263}{70798490895675034889835478808576} a^{6} - \frac{29491946225965570120532833095}{1106226420244922420153679356384} a^{4} - \frac{22952250939477710428748597837}{1106226420244922420153679356384} a^{2} - \frac{35058116072949339394254747}{153984746693335526190656926}$, $\frac{1}{72497654677171235727191530299981824} a^{17} - \frac{146507217206305334912699}{18124413669292808931797882574995456} a^{15} - \frac{58525789189456115881808152335}{18124413669292808931797882574995456} a^{13} + \frac{1462255915902775637500438673687}{9062206834646404465898941287497728} a^{11} - \frac{3190366671128533634554724792265}{1132775854330800558237367660937216} a^{9} - \frac{71984483578874072274965179785}{8849811361959379361229434851072} a^{7} + \frac{833856424204912723315728935}{1106226420244922420153679356384} a^{5} - \frac{34019091847284725375930485627}{1106226420244922420153679356384} a^{3} - \frac{36964668275459952866048573995}{276556605061230605038419839096} a$
Class group and class number
$C_{2}\times C_{36}\times C_{26617356}$, which has order $1916449632$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 780956274.3587214 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-38}) \), 3.3.29241.1, 6.0.8317790995968.2, 9.9.532962204162830310969.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.9.22.3 | $x^{9} + 9 x^{7} + 12 x^{6} + 18 x^{5} + 69$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.3 | $x^{9} + 9 x^{7} + 12 x^{6} + 18 x^{5} + 69$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 19 | Data not computed | ||||||