Normalized defining polynomial
\( x^{18} + 684 x^{16} + 145692 x^{14} + 12701424 x^{12} + 553659696 x^{10} + 13065198912 x^{8} + 168726690432 x^{6} + 1120116736512 x^{4} + 3069202731264 x^{2} + 985095890432 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-724363080171793764995208566309796540433577438871552=-\,2^{27}\cdot 3^{44}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $669.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4104=2^{3}\cdot 3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4104}(1537,·)$, $\chi_{4104}(1093,·)$, $\chi_{4104}(1,·)$, $\chi_{4104}(2569,·)$, $\chi_{4104}(781,·)$, $\chi_{4104}(529,·)$, $\chi_{4104}(2197,·)$, $\chi_{4104}(421,·)$, $\chi_{4104}(481,·)$, $\chi_{4104}(3301,·)$, $\chi_{4104}(2029,·)$, $\chi_{4104}(1405,·)$, $\chi_{4104}(385,·)$, $\chi_{4104}(3637,·)$, $\chi_{4104}(577,·)$, $\chi_{4104}(505,·)$, $\chi_{4104}(769,·)$, $\chi_{4104}(2749,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{22208} a^{13} + \frac{81}{11104} a^{11} - \frac{25}{1388} a^{9} + \frac{2}{347} a^{7} + \frac{67}{694} a^{5} - \frac{37}{694} a^{3} + \frac{110}{347} a$, $\frac{1}{44416} a^{14} + \frac{81}{22208} a^{12} - \frac{25}{2776} a^{10} + \frac{1}{347} a^{8} + \frac{67}{1388} a^{6} - \frac{37}{1388} a^{4} + \frac{55}{347} a^{2}$, $\frac{1}{1288064} a^{15} + \frac{5}{644032} a^{13} - \frac{523}{80504} a^{11} + \frac{131}{5552} a^{9} + \frac{4817}{80504} a^{7} + \frac{1309}{20126} a^{5} - \frac{1589}{20126} a^{3} + \frac{2744}{10063} a$, $\frac{1}{6796903430452939337812168070542144256} a^{16} - \frac{35612984788685978384844241665897}{3398451715226469668906084035271072128} a^{14} + \frac{355970719479810317824901207185137}{1699225857613234834453042017635536064} a^{12} - \frac{416803752931959974511709005273289}{29296997545055773007811069269578208} a^{10} - \frac{781676459888564007252952395210011}{212403232201654354306630252204442008} a^{8} - \frac{3783382203065246615440303787115615}{106201616100827177153315126102221004} a^{6} + \frac{3960384063928612215679199552023151}{53100808050413588576657563051110502} a^{4} - \frac{578558748282031873491562498377533}{26550404025206794288328781525555251} a^{2} + \frac{1094921716329788684668158121}{7603511143544028324245661991}$, $\frac{1}{6796903430452939337812168070542144256} a^{17} - \frac{82096626259929163385753776531}{212403232201654354306630252204442008} a^{15} - \frac{8131015139939022509926562915889}{1699225857613234834453042017635536064} a^{13} + \frac{5526772181795237522314860536889471}{849612928806617417226521008817768032} a^{11} - \frac{222045023021981281075305706401330}{26550404025206794288328781525555251} a^{9} - \frac{10218374864774319948536418508662615}{212403232201654354306630252204442008} a^{7} - \frac{603961615305167732567894556797285}{106201616100827177153315126102221004} a^{5} - \frac{9291361321438608792289458440388857}{53100808050413588576657563051110502} a^{3} + \frac{35950110271107532409017200840112}{76514132637483557026884096615433} a$
Class group and class number
$C_{9}\times C_{261743454}$, which has order $2355691086$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 771793981.9189847 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-38}) \), 3.3.29241.2, 6.0.8317790995968.4, 9.9.532962204162830310969.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.22.4 | $x^{9} + 9 x^{8} + 9 x^{7} + 12 x^{6} + 18 x^{5} + 33$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.4 | $x^{9} + 9 x^{8} + 9 x^{7} + 12 x^{6} + 18 x^{5} + 33$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 19 | Data not computed | ||||||