Normalized defining polynomial
\( x^{18} + 684 x^{16} + 182628 x^{14} + 24835584 x^{12} + 1856540160 x^{10} + 76187049984 x^{8} + 1609060073472 x^{6} + 14569818292224 x^{4} + 27472624091136 x^{2} + 163208757248 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-724363080171793764995208566309796540433577438871552=-\,2^{27}\cdot 3^{44}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $669.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4104=2^{3}\cdot 3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4104}(1,·)$, $\chi_{4104}(901,·)$, $\chi_{4104}(2113,·)$, $\chi_{4104}(3721,·)$, $\chi_{4104}(3661,·)$, $\chi_{4104}(3757,·)$, $\chi_{4104}(1873,·)$, $\chi_{4104}(3613,·)$, $\chi_{4104}(2605,·)$, $\chi_{4104}(3361,·)$, $\chi_{4104}(1573,·)$, $\chi_{4104}(3313,·)$, $\chi_{4104}(3049,·)$, $\chi_{4104}(3373,·)$, $\chi_{4104}(829,·)$, $\chi_{4104}(1393,·)$, $\chi_{4104}(841,·)$, $\chi_{4104}(1405,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{64} a^{5} - \frac{1}{32} a^{3} + \frac{1}{4} a$, $\frac{1}{128} a^{6} - \frac{1}{64} a^{4} + \frac{1}{8} a^{2}$, $\frac{1}{128} a^{7} + \frac{3}{32} a^{3} + \frac{1}{4} a$, $\frac{1}{1024} a^{8} - \frac{1}{256} a^{6} + \frac{5}{256} a^{4} - \frac{1}{32} a^{2}$, $\frac{1}{4096} a^{9} + \frac{1}{1024} a^{7} + \frac{1}{1024} a^{5} + \frac{3}{128} a^{3}$, $\frac{1}{16384} a^{10} + \frac{1}{4096} a^{8} + \frac{1}{4096} a^{6} + \frac{3}{512} a^{4}$, $\frac{1}{65536} a^{11} - \frac{1}{16384} a^{9} - \frac{7}{16384} a^{7} - \frac{7}{1024} a^{5} + \frac{1}{256} a^{3} - \frac{1}{8} a$, $\frac{1}{48234496} a^{12} + \frac{319}{12058624} a^{10} - \frac{4743}{12058624} a^{8} + \frac{889}{753664} a^{6} - \frac{2463}{188416} a^{4} + \frac{407}{5888} a^{2} - \frac{21}{46}$, $\frac{1}{96468992} a^{13} - \frac{49}{24117248} a^{11} + \frac{2617}{24117248} a^{9} + \frac{3005}{1507328} a^{7} + \frac{481}{376832} a^{5} + \frac{637}{11776} a^{3} - \frac{19}{184} a$, $\frac{1}{2378539466752} a^{14} + \frac{4397}{594634866688} a^{12} - \frac{5470271}{594634866688} a^{10} + \frac{10408881}{74329358336} a^{8} + \frac{33921055}{9291169792} a^{6} - \frac{27743693}{1161396224} a^{4} - \frac{6770399}{36293632} a^{2} - \frac{21153}{283544}$, $\frac{1}{19028315734016} a^{15} + \frac{16725}{4757078933504} a^{13} - \frac{26033375}{4757078933504} a^{11} + \frac{35613477}{594634866688} a^{9} - \frac{66268601}{74329358336} a^{7} - \frac{8900345}{9291169792} a^{5} + \frac{26361101}{290349056} a^{3} - \frac{717685}{2268352} a$, $\frac{1}{8877328699652237688832} a^{16} + \frac{160341973}{2219332174913059422208} a^{14} - \frac{14981692277727}{2219332174913059422208} a^{12} - \frac{328531152656667}{277416521864132427776} a^{10} + \frac{8438499079137911}{34677065233016553472} a^{8} - \frac{8624638693685337}{4334633154127069184} a^{6} + \frac{1553124959853337}{135457286066470912} a^{4} + \frac{2635679001297}{33070626481072} a^{2} + \frac{452664995975}{8267656620268}$, $\frac{1}{17754657399304475377664} a^{17} - \frac{72924303}{4438664349826118844416} a^{15} + \frac{15424100266321}{4438664349826118844416} a^{13} + \frac{1580546059317107}{554833043728264855552} a^{11} - \frac{5121648952340003}{69354130466033106944} a^{9} - \frac{25942928734284279}{8669266308254138368} a^{7} - \frac{445275260799405}{541829144265883648} a^{5} - \frac{13024180810855}{252718817288192} a^{3} + \frac{64885266681629}{132282505924288} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{36}\times C_{781596}$, which has order $3601594368$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 373976932305.4817 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-38}) \), 3.3.29241.1, 6.0.8317790995968.2, 9.9.532962204162830310969.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.9.22.1 | $x^{9} + 18 x^{8} + 21 x^{6} + 18 x^{5} + 9 x^{3} + 15$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.1 | $x^{9} + 18 x^{8} + 21 x^{6} + 18 x^{5} + 9 x^{3} + 15$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 19 | Data not computed | ||||||