Normalized defining polynomial
\( x^{18} + 762 x^{16} + 163449 x^{14} + 12079605 x^{12} + 378579888 x^{10} + 5811085152 x^{8} + 45949843584 x^{6} + 184059502848 x^{4} + 339802159104 x^{2} + 226534772736 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-72089101682458965160031671674946384142833324130304=-\,2^{18}\cdot 3^{27}\cdot 127^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $588.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4572=2^{2}\cdot 3^{2}\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4572}(1,·)$, $\chi_{4572}(4211,·)$, $\chi_{4572}(2305,·)$, $\chi_{4572}(1163,·)$, $\chi_{4572}(781,·)$, $\chi_{4572}(3791,·)$, $\chi_{4572}(3829,·)$, $\chi_{4572}(3409,·)$, $\chi_{4572}(4571,·)$, $\chi_{4572}(1885,·)$, $\chi_{4572}(2267,·)$, $\chi_{4572}(743,·)$, $\chi_{4572}(3049,·)$, $\chi_{4572}(3047,·)$, $\chi_{4572}(1523,·)$, $\chi_{4572}(1525,·)$, $\chi_{4572}(361,·)$, $\chi_{4572}(2687,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{381} a^{6}$, $\frac{1}{762} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{1524} a^{8} - \frac{1}{762} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{3048} a^{9} - \frac{1}{1524} a^{7} - \frac{3}{8} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{6096} a^{10} - \frac{1}{3048} a^{8} + \frac{1}{6096} a^{6} - \frac{3}{16} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{12192} a^{11} - \frac{1}{6096} a^{9} + \frac{1}{12192} a^{7} + \frac{13}{32} a^{5} - \frac{3}{8} a^{3}$, $\frac{1}{371612160} a^{12} - \frac{7}{97536} a^{10} - \frac{307}{975360} a^{8} - \frac{1}{65024} a^{6} + \frac{15}{64} a^{4} - \frac{11}{32} a^{2} + \frac{1}{40}$, $\frac{1}{743224320} a^{13} - \frac{7}{195072} a^{11} - \frac{307}{1950720} a^{9} - \frac{1}{130048} a^{7} + \frac{15}{128} a^{5} - \frac{11}{64} a^{3} + \frac{1}{80} a$, $\frac{1}{135266826240} a^{14} + \frac{1}{13526682624} a^{12} + \frac{1353}{16906240} a^{10} + \frac{2549}{71006208} a^{8} + \frac{1661}{1479296} a^{6} + \frac{167}{1664} a^{4} - \frac{3849}{14560} a^{2} - \frac{17}{364}$, $\frac{1}{270533652480} a^{15} + \frac{1}{27053365248} a^{13} + \frac{1353}{33812480} a^{11} + \frac{2549}{142012416} a^{9} + \frac{1661}{2958592} a^{7} - \frac{1497}{3328} a^{5} - \frac{3849}{29120} a^{3} + \frac{347}{728} a$, $\frac{1}{293824462201606103040} a^{16} - \frac{346905821}{146912231100803051520} a^{14} + \frac{294310633457}{293824462201606103040} a^{12} + \frac{2821696908469}{771192814177443840} a^{10} - \frac{3087926270419}{64266067848120320} a^{8} + \frac{1403241649605}{1606651696203008} a^{6} + \frac{457220259637}{3953375236720} a^{4} - \frac{73352465009}{247085952295} a^{2} - \frac{791794132821}{1976687618360}$, $\frac{1}{587648924403212206080} a^{17} - \frac{346905821}{293824462201606103040} a^{15} + \frac{294310633457}{587648924403212206080} a^{13} + \frac{2821696908469}{1542385628354887680} a^{11} - \frac{3087926270419}{128532135696240640} a^{9} + \frac{1403241649605}{3213303392406016} a^{7} - \frac{3496154977083}{7906750473440} a^{5} + \frac{86866743643}{247085952295} a^{3} + \frac{1184893485539}{3953375236720} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8}\times C_{8}\times C_{728}\times C_{3640}$, which has order $2713518080$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 139246964.12762704 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $127$ | 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |