Normalized defining polynomial
\( x^{18} - 18 x^{16} - 54 x^{15} + 117 x^{14} + 648 x^{13} + 2301 x^{12} - 2511 x^{11} - 14661 x^{10} - 10260 x^{9} + 29970 x^{8} + 48843 x^{7} + 71814 x^{6} - 44469 x^{5} - 107280 x^{4} + 185679 x^{3} + 56880 x^{2} + 512000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-718606633367888171454789870996879=-\,3^{24}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{10} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{5}{12} a^{4} + \frac{1}{4} a^{3} - \frac{1}{6} a^{2} + \frac{5}{12} a$, $\frac{1}{4356} a^{12} - \frac{3}{242} a^{11} - \frac{1}{484} a^{10} + \frac{83}{1452} a^{9} - \frac{119}{1452} a^{8} - \frac{5}{66} a^{7} - \frac{10}{99} a^{6} - \frac{41}{484} a^{5} - \frac{2}{11} a^{4} - \frac{677}{1452} a^{3} - \frac{301}{1452} a^{2} + \frac{5}{12} a + \frac{67}{1089}$, $\frac{1}{4356} a^{13} - \frac{7}{1452} a^{11} - \frac{79}{1452} a^{10} + \frac{7}{1452} a^{9} - \frac{1}{726} a^{8} + \frac{14}{99} a^{7} + \frac{185}{1452} a^{6} - \frac{307}{726} a^{5} - \frac{413}{1452} a^{4} - \frac{559}{1452} a^{3} + \frac{323}{1452} a^{2} - \frac{296}{1089} a - \frac{125}{363}$, $\frac{1}{261360} a^{14} - \frac{1}{14520} a^{13} + \frac{1}{52272} a^{12} + \frac{313}{14520} a^{11} - \frac{241}{4356} a^{10} - \frac{307}{14520} a^{9} - \frac{481}{23760} a^{8} - \frac{4463}{29040} a^{7} + \frac{1447}{32670} a^{6} - \frac{13169}{29040} a^{5} - \frac{239}{1980} a^{4} - \frac{67}{7260} a^{3} - \frac{43921}{130680} a^{2} + \frac{13051}{29040} a - \frac{1}{297}$, $\frac{1}{31624560} a^{15} - \frac{1}{1171280} a^{14} + \frac{227}{31624560} a^{13} + \frac{161}{3513840} a^{12} - \frac{10111}{5270760} a^{11} + \frac{42083}{1756920} a^{10} + \frac{2499643}{31624560} a^{9} - \frac{14492}{219615} a^{8} - \frac{2231281}{31624560} a^{7} - \frac{21467}{234256} a^{6} - \frac{3858013}{10541520} a^{5} + \frac{86401}{175692} a^{4} - \frac{3240847}{15812280} a^{3} + \frac{1093853}{3513840} a^{2} - \frac{107431}{261360} a - \frac{19684}{43923}$, $\frac{1}{7589894400} a^{16} - \frac{1}{843321600} a^{15} - \frac{17}{7589894400} a^{14} - \frac{4709}{843321600} a^{13} - \frac{8777}{344995200} a^{12} + \frac{1171781}{140553600} a^{11} + \frac{93428051}{1517978880} a^{10} + \frac{17032693}{421660800} a^{9} + \frac{248119873}{7589894400} a^{8} - \frac{35785493}{843321600} a^{7} - \frac{1058446937}{7589894400} a^{6} + \frac{1323847}{6388800} a^{5} - \frac{29656123}{151797888} a^{4} - \frac{50935111}{843321600} a^{3} + \frac{1309658311}{7589894400} a^{2} + \frac{26023}{527076} a - \frac{105551}{1185921}$, $\frac{1}{724242990697815916800} a^{17} + \frac{42706400069}{724242990697815916800} a^{16} - \frac{2561031581759}{724242990697815916800} a^{15} - \frac{827047330637707}{724242990697815916800} a^{14} + \frac{18816951616564237}{181060747674453979200} a^{13} - \frac{1379947496838059}{362121495348907958400} a^{12} + \frac{9004699936012961347}{724242990697815916800} a^{11} + \frac{1958986825149886451}{181060747674453979200} a^{10} - \frac{9149786295935972359}{144848598139563183360} a^{9} - \frac{57594913355359880143}{724242990697815916800} a^{8} - \frac{2196461490294911293}{65840271881619628800} a^{7} - \frac{751203041687237413}{72424299069781591680} a^{6} - \frac{68758499727400311751}{362121495348907958400} a^{5} - \frac{60870993722542703059}{724242990697815916800} a^{4} + \frac{286806844835844913909}{724242990697815916800} a^{3} + \frac{50009032696752114169}{362121495348907958400} a^{2} - \frac{4259333983509641341}{9053037383722698960} a - \frac{2162635710973609}{113162967296533737}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{45}$, which has order $1215$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10885172.9386 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-239}) \), 3.1.239.1 x3, \(\Q(\zeta_{9})^+\), 6.0.13651919.1, 6.0.89570240559.2 x2, 6.0.89570240559.4, 9.3.7255189485279.4 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 239 | Data not computed | ||||||