Normalized defining polynomial
\( x^{18} + 630 x^{16} + 165375 x^{14} + 23409750 x^{12} + 1931304375 x^{10} + 93593981250 x^{8} + 2547836156250 x^{6} + 34743220312500 x^{4} + 182401906640625 x^{2} + 209676837890625 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7181200022505608756129304837174962688000000000=-\,2^{18}\cdot 3^{45}\cdot 5^{9}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $352.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3780=2^{2}\cdot 3^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3780}(1,·)$, $\chi_{3780}(3659,·)$, $\chi_{3780}(3779,·)$, $\chi_{3780}(2519,·)$, $\chi_{3780}(1739,·)$, $\chi_{3780}(781,·)$, $\chi_{3780}(2641,·)$, $\chi_{3780}(121,·)$, $\chi_{3780}(2521,·)$, $\chi_{3780}(1381,·)$, $\chi_{3780}(3301,·)$, $\chi_{3780}(1259,·)$, $\chi_{3780}(1261,·)$, $\chi_{3780}(1139,·)$, $\chi_{3780}(479,·)$, $\chi_{3780}(2999,·)$, $\chi_{3780}(2041,·)$, $\chi_{3780}(2399,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{875} a^{6}$, $\frac{1}{875} a^{7}$, $\frac{1}{4375} a^{8}$, $\frac{1}{1413125} a^{9} + \frac{9}{40375} a^{7} - \frac{134}{8075} a^{5} - \frac{29}{323} a^{3} - \frac{143}{323} a$, $\frac{1}{2805053125} a^{10} + \frac{10399}{561010625} a^{8} - \frac{61016}{112202125} a^{6} + \frac{37969}{3205775} a^{4} + \frac{27958}{641155} a^{2} + \frac{117}{397}$, $\frac{1}{2805053125} a^{11} + \frac{11}{80144375} a^{9} + \frac{58084}{112202125} a^{7} + \frac{10576}{3205775} a^{5} - \frac{14124}{641155} a^{3} - \frac{24935}{128231} a$, $\frac{1}{98176859375} a^{12} + \frac{3821}{561010625} a^{8} + \frac{40597}{112202125} a^{6} - \frac{3333}{641155} a^{4} + \frac{318}{641155} a^{2} - \frac{96}{397}$, $\frac{1}{98176859375} a^{13} - \frac{149}{561010625} a^{9} + \frac{353}{843625} a^{7} + \frac{2391}{3205775} a^{5} + \frac{63044}{641155} a^{3} + \frac{23778}{128231} a$, $\frac{1}{490884296875} a^{14} + \frac{57628}{561010625} a^{8} + \frac{1566}{5905375} a^{6} - \frac{526}{33745} a^{4} - \frac{42103}{641155} a^{2} - \frac{35}{397}$, $\frac{1}{490884296875} a^{15} + \frac{9}{80144375} a^{9} - \frac{6373}{112202125} a^{7} - \frac{6024}{641155} a^{5} - \frac{30193}{641155} a^{3} + \frac{13706}{128231} a$, $\frac{1}{2454421484375} a^{16} - \frac{4071}{112202125} a^{8} + \frac{244}{641155} a^{6} + \frac{14149}{3205775} a^{4} + \frac{47586}{641155} a^{2} + \frac{172}{397}$, $\frac{1}{2454421484375} a^{17} - \frac{108}{561010625} a^{9} + \frac{35951}{112202125} a^{7} - \frac{6098}{3205775} a^{5} + \frac{61084}{641155} a^{3} - \frac{1099}{7543} a$
Class group and class number
$C_{2}\times C_{2}\times C_{171585186}$, which has order $686340744$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10392888.21418944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-105}) \), \(\Q(\zeta_{9})^+\), 6.0.54010152000.17, 9.9.3691950281939241.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||