Normalized defining polynomial
\( x^{18} + 630 x^{16} + 165375 x^{14} + 23409750 x^{12} + 1931304375 x^{10} + 93593981250 x^{8} + 2547836156250 x^{6} + 34743220312500 x^{4} + 182401906640625 x^{2} + 2751369140625 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7181200022505608756129304837174962688000000000=-\,2^{18}\cdot 3^{45}\cdot 5^{9}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $352.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3780=2^{2}\cdot 3^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3780}(1,·)$, $\chi_{3780}(2819,·)$, $\chi_{3780}(961,·)$, $\chi_{3780}(3721,·)$, $\chi_{3780}(1559,·)$, $\chi_{3780}(1261,·)$, $\chi_{3780}(2579,·)$, $\chi_{3780}(3779,·)$, $\chi_{3780}(2519,·)$, $\chi_{3780}(2521,·)$, $\chi_{3780}(2461,·)$, $\chi_{3780}(3481,·)$, $\chi_{3780}(1319,·)$, $\chi_{3780}(1259,·)$, $\chi_{3780}(2221,·)$, $\chi_{3780}(1201,·)$, $\chi_{3780}(59,·)$, $\chi_{3780}(299,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{875} a^{6}$, $\frac{1}{875} a^{7}$, $\frac{1}{4375} a^{8}$, $\frac{1}{161875} a^{9} - \frac{11}{32375} a^{7} + \frac{4}{925} a^{5} - \frac{2}{37} a^{3} + \frac{16}{37} a$, $\frac{1}{552803125} a^{10} - \frac{1972}{110560625} a^{8} - \frac{11553}{22112125} a^{6} - \frac{5449}{631775} a^{4} - \frac{56}{25271} a^{2} - \frac{165}{683}$, $\frac{1}{552803125} a^{11} + \frac{11}{15794375} a^{9} - \frac{8821}{22112125} a^{7} + \frac{2747}{631775} a^{5} + \frac{4501}{126355} a^{3} + \frac{1408}{25271} a$, $\frac{1}{19348109375} a^{12} - \frac{1229}{110560625} a^{8} + \frac{139}{884485} a^{6} + \frac{2008}{126355} a^{4} - \frac{329}{126355} a^{2} - \frac{234}{683}$, $\frac{1}{19348109375} a^{13} + \frac{137}{110560625} a^{9} - \frac{11551}{22112125} a^{7} - \frac{9767}{631775} a^{5} + \frac{11282}{126355} a^{3} - \frac{12073}{25271} a$, $\frac{1}{96740546875} a^{14} + \frac{5903}{110560625} a^{8} - \frac{1868}{22112125} a^{6} - \frac{67}{126355} a^{4} + \frac{1016}{126355} a^{2} + \frac{66}{683}$, $\frac{1}{96740546875} a^{15} - \frac{244}{110560625} a^{9} - \frac{272}{597625} a^{7} + \frac{348}{631775} a^{5} + \frac{11944}{126355} a^{3} + \frac{5174}{25271} a$, $\frac{1}{483702734375} a^{16} - \frac{11083}{110560625} a^{8} - \frac{2283}{4422425} a^{6} - \frac{704}{126355} a^{4} - \frac{12604}{126355} a^{2} + \frac{37}{683}$, $\frac{1}{483702734375} a^{17} - \frac{31}{22112125} a^{9} - \frac{5268}{22112125} a^{7} - \frac{414}{25271} a^{5} + \frac{4471}{126355} a^{3} - \frac{680}{25271} a$
Class group and class number
$C_{2}\times C_{2}\times C_{117953574}$, which has order $471814296$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4392158.291236831 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-105}) \), \(\Q(\zeta_{9})^+\), 6.0.54010152000.17, 9.9.3691950281939241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||