Normalized defining polynomial
\( x^{18} - 3 x^{17} + 12 x^{16} - 33 x^{15} + 116 x^{14} - 218 x^{13} + 611 x^{12} - 1097 x^{11} + 2554 x^{10} - 3133 x^{9} + 7272 x^{8} - 7520 x^{7} + 14017 x^{6} - 5399 x^{5} + 13806 x^{4} - 961 x^{3} + 12432 x^{2} + 2636 x + 5144 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7123576667122313292544004096=-\,2^{12}\cdot 7^{12}\cdot 53^{6}\cdot 5669\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 53, 5669$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{124139796447664074064090721869267348} a^{17} - \frac{23094516068555221950589021470456503}{124139796447664074064090721869267348} a^{16} - \frac{8436327624873798014214392288977466}{31034949111916018516022680467316837} a^{15} + \frac{5084563235296939277435658567315939}{124139796447664074064090721869267348} a^{14} + \frac{6587072544259599311911035414396739}{31034949111916018516022680467316837} a^{13} - \frac{5732542296439624040299473114151493}{62069898223832037032045360934633674} a^{12} + \frac{24293477209302506273324545229075079}{124139796447664074064090721869267348} a^{11} - \frac{58809498761239086026918396394720629}{124139796447664074064090721869267348} a^{10} - \frac{10756407246839640192011731307350267}{62069898223832037032045360934633674} a^{9} + \frac{33459627523257861514108203073768767}{124139796447664074064090721869267348} a^{8} - \frac{9489891932154668167853452824407502}{31034949111916018516022680467316837} a^{7} + \frac{4584167345287455955468148651104538}{31034949111916018516022680467316837} a^{6} + \frac{13579748758956432506135560168485673}{124139796447664074064090721869267348} a^{5} - \frac{23564219953266924061040452559260943}{124139796447664074064090721869267348} a^{4} + \frac{26142080418657823876814730971351879}{62069898223832037032045360934633674} a^{3} - \frac{2641622401017460770908864751742461}{124139796447664074064090721869267348} a^{2} + \frac{11526421405125498542755924733329881}{31034949111916018516022680467316837} a + \frac{6980202664294520792611944615386402}{31034949111916018516022680467316837}$
Class group and class number
$C_{2}\times C_{48}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23621.7133529 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 96 conjugacy class representatives for t18n544 are not computed |
| Character table for t18n544 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.2597.1, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.12.22 | $x^{12} - 52 x^{10} - 7 x^{8} + 32 x^{6} + 35 x^{4} - 44 x^{2} - 29$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $53$ | 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 53.12.6.1 | $x^{12} + 2382032 x^{6} - 418195493 x^{2} + 1418519112256$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 5669 | Data not computed | ||||||