Normalized defining polynomial
\( x^{18} - x^{17} + 172 x^{16} - 172 x^{15} + 12484 x^{14} - 12484 x^{13} + 497269 x^{12} - 497269 x^{11} + 11841238 x^{10} - 11841238 x^{9} + 172277371 x^{8} - 172277371 x^{7} + 1505131399 x^{6} - 1505131399 x^{5} + 7502974525 x^{4} - 7502974525 x^{3} + 19771290010 x^{2} - 19771290010 x + 27132279301 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-712240610787788121582600955510822303=-\,19^{17}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(703=19\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{703}(1,·)$, $\chi_{703}(519,·)$, $\chi_{703}(334,·)$, $\chi_{703}(591,·)$, $\chi_{703}(593,·)$, $\chi_{703}(147,·)$, $\chi_{703}(149,·)$, $\chi_{703}(408,·)$, $\chi_{703}(221,·)$, $\chi_{703}(482,·)$, $\chi_{703}(295,·)$, $\chi_{703}(554,·)$, $\chi_{703}(556,·)$, $\chi_{703}(110,·)$, $\chi_{703}(112,·)$, $\chi_{703}(369,·)$, $\chi_{703}(184,·)$, $\chi_{703}(702,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4476859381} a^{10} - \frac{414545938}{4476859381} a^{9} + \frac{90}{4476859381} a^{8} + \frac{2236654070}{4476859381} a^{7} + \frac{2835}{4476859381} a^{6} + \frac{2190487937}{4476859381} a^{5} + \frac{36450}{4476859381} a^{4} - \frac{479417535}{4476859381} a^{3} + \frac{164025}{4476859381} a^{2} + \frac{944002346}{4476859381} a + \frac{118098}{4476859381}$, $\frac{1}{4476859381} a^{11} + \frac{99}{4476859381} a^{9} - \frac{745945939}{4476859381} a^{8} + \frac{3564}{4476859381} a^{7} + \frac{14204964}{4476859381} a^{6} + \frac{56133}{4476859381} a^{5} + \frac{319611690}{4476859381} a^{4} + \frac{360855}{4476859381} a^{3} - \frac{2175655213}{4476859381} a^{2} + \frac{649539}{4476859381} a - \frac{1888004692}{4476859381}$, $\frac{1}{4476859381} a^{12} + \frac{2367494}{4476859381} a^{9} - \frac{5346}{4476859381} a^{8} - \frac{2048438297}{4476859381} a^{7} - \frac{224532}{4476859381} a^{6} - \frac{1649443785}{4476859381} a^{5} - \frac{3247695}{4476859381} a^{4} + \frac{518086942}{4476859381} a^{3} - \frac{15588936}{4476859381} a^{2} - \frac{1330189945}{4476859381} a - \frac{11691702}{4476859381}$, $\frac{1}{4476859381} a^{13} - \frac{6318}{4476859381} a^{9} + \frac{2215346624}{4476859381} a^{8} - \frac{303264}{4476859381} a^{7} + \frac{592429487}{4476859381} a^{6} - \frac{5373459}{4476859381} a^{5} - \frac{716741119}{4476859381} a^{4} - \frac{36846576}{4476859381} a^{3} - \frac{171627148}{4476859381} a^{2} - \frac{69087330}{4476859381} a - \frac{2031024790}{4476859381}$, $\frac{1}{4476859381} a^{14} + \frac{2076848225}{4476859381} a^{9} + \frac{265356}{4476859381} a^{8} - \frac{1672222070}{4476859381} a^{7} + \frac{12538071}{4476859381} a^{6} + \frac{813698176}{4476859381} a^{5} + \frac{193444524}{4476859381} a^{4} + \frac{1702187659}{4476859381} a^{3} + \frac{967222620}{4476859381} a^{2} - \frac{1000898254}{4476859381} a + \frac{746143164}{4476859381}$, $\frac{1}{4476859381} a^{15} + \frac{331695}{4476859381} a^{9} - \frac{560468318}{4476859381} a^{8} + \frac{17911530}{4476859381} a^{7} + \frac{19066316}{4476859381} a^{6} + \frac{338527917}{4476859381} a^{5} - \frac{200340262}{4476859381} a^{4} - \frac{2058802831}{4476859381} a^{3} + \frac{1629874554}{4476859381} a^{2} + \frac{186535394}{4476859381} a + \frac{2073230797}{4476859381}$, $\frac{1}{4476859381} a^{16} - \frac{4591442}{4476859381} a^{9} - \frac{11941020}{4476859381} a^{8} + \frac{276499462}{4476859381} a^{7} - \frac{601827408}{4476859381} a^{6} - \frac{2203364082}{4476859381} a^{5} - \frac{718507438}{4476859381} a^{4} - \frac{492926122}{4476859381} a^{3} - \frac{497424409}{4476859381} a^{2} + \frac{1713900229}{4476859381} a + \frac{1119218319}{4476859381}$, $\frac{1}{4476859381} a^{17} - \frac{15615180}{4476859381} a^{9} + \frac{689729242}{4476859381} a^{8} - \frac{899434368}{4476859381} a^{7} + \frac{1859655226}{4476859381} a^{6} + \frac{199823404}{4476859381} a^{5} + \frac{1221337681}{4476859381} a^{4} - \frac{267834751}{4476859381} a^{3} - \frac{1764061110}{4476859381} a^{2} - \frac{947005233}{4476859381} a + \frac{540132215}{4476859381}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{14}\times C_{518}$, which has order $928256$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-703}) \), 3.3.361.1, 6.0.125421842647.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| $37$ | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |