Normalized defining polynomial
\( x^{18} + 85 x^{16} + 2829 x^{14} + 47384 x^{12} + 420932 x^{10} + 1886613 x^{8} + 3626295 x^{6} + 2697233 x^{4} + 831922 x^{2} + 89383 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7091564539152983760000702738432=-\,2^{12}\cdot 3^{6}\cdot 7^{15}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{728} a^{12} - \frac{5}{364} a^{10} - \frac{95}{728} a^{8} + \frac{31}{364} a^{6} - \frac{1}{2} a^{5} + \frac{15}{52} a^{4} - \frac{1}{2} a^{2} - \frac{41}{104}$, $\frac{1}{728} a^{13} - \frac{5}{364} a^{11} + \frac{87}{728} a^{9} - \frac{1}{4} a^{8} - \frac{15}{91} a^{7} - \frac{11}{52} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{41}{104} a - \frac{1}{4}$, $\frac{1}{728} a^{14} - \frac{1}{56} a^{10} - \frac{20}{91} a^{8} - \frac{1}{4} a^{7} + \frac{51}{364} a^{6} - \frac{1}{4} a^{5} - \frac{3}{26} a^{4} - \frac{1}{2} a^{3} - \frac{15}{104} a^{2} - \frac{1}{4} a + \frac{4}{13}$, $\frac{1}{728} a^{15} - \frac{1}{56} a^{11} + \frac{11}{364} a^{9} - \frac{10}{91} a^{7} - \frac{1}{4} a^{6} + \frac{5}{13} a^{5} - \frac{1}{4} a^{4} - \frac{41}{104} a^{3} + \frac{4}{13} a - \frac{1}{4}$, $\frac{1}{5235530983776184} a^{16} + \frac{2320564150055}{5235530983776184} a^{14} + \frac{431763349393}{2617765491888092} a^{12} + \frac{288255826048973}{5235530983776184} a^{10} + \frac{9415612916685}{57533307514024} a^{8} + \frac{16906139355491}{93491624710289} a^{6} - \frac{1}{2} a^{5} - \frac{347201210713879}{747932997682312} a^{4} - \frac{1}{2} a^{3} + \frac{163879321895435}{747932997682312} a^{2} - \frac{1253739376231}{57533307514024}$, $\frac{1}{591615001166708792} a^{17} - \frac{386029261569607}{591615001166708792} a^{15} + \frac{90111674665359}{147903750291677198} a^{13} + \frac{752681229493675}{6501263749084712} a^{11} - \frac{62789400661970715}{591615001166708792} a^{9} - \frac{1}{4} a^{8} + \frac{5118318330262853}{21129107184525314} a^{7} - \frac{1}{4} a^{6} - \frac{33889119491389871}{84516428738101256} a^{5} + \frac{16647171924663311}{84516428738101256} a^{3} + \frac{1}{4} a^{2} + \frac{18250526523811617}{84516428738101256} a$
Class group and class number
$C_{3}\times C_{27}$, which has order $81$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{79618166364557}{591615001166708792} a^{17} + \frac{3427963479}{1308882745944046} a^{16} - \frac{6737486028277981}{591615001166708792} a^{15} + \frac{20138507901}{93491624710289} a^{14} - \frac{31815024878658785}{84516428738101256} a^{13} + \frac{4469383658963}{654441372972023} a^{12} - \frac{3689209519489847477}{591615001166708792} a^{11} + \frac{69411793591149}{654441372972023} a^{10} - \frac{4017360259230191103}{73951875145838599} a^{9} + \frac{1077002117378037}{1308882745944046} a^{8} - \frac{69148299274913147683}{295807500583354396} a^{7} + \frac{134390593119602}{50341644074771} a^{6} - \frac{33965195666038953815}{84516428738101256} a^{5} + \frac{39761001045336}{93491624710289} a^{4} - \frac{18236314724571599053}{84516428738101256} a^{3} - \frac{652360369688901}{93491624710289} a^{2} - \frac{360580447844055683}{10564553592262657} a - \frac{447820411359325}{186983249420578} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11573439.6965 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T42):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 9.9.1006519075055424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |