Normalized defining polynomial
\( x^{18} - 3 x^{17} + 45 x^{16} - 70 x^{15} + 768 x^{14} - 195 x^{13} + 7003 x^{12} + 6999 x^{11} + 44889 x^{10} + 82138 x^{9} + 231111 x^{8} + 417480 x^{7} + 847530 x^{6} + 1108374 x^{5} + 1683297 x^{4} + 1332753 x^{3} + 931392 x^{2} - 168924 x + 112589 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7053072320828130442597556717031=-\,3^{24}\cdot 7^{12}\cdot 71^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{390093678645019159048399035309778602971092439474809} a^{17} + \frac{165094809400759974685110439511391240345597836837561}{390093678645019159048399035309778602971092439474809} a^{16} + \frac{69489281613448268037415265791131136366585680859953}{390093678645019159048399035309778602971092439474809} a^{15} - \frac{161073942860686408410104721535649812937992998230227}{390093678645019159048399035309778602971092439474809} a^{14} - \frac{175435984300104882267833977252722173264188714796340}{390093678645019159048399035309778602971092439474809} a^{13} - \frac{97124335933749902456832743465163389395704818313996}{390093678645019159048399035309778602971092439474809} a^{12} + \frac{114886620766730882828423128710619938974398794266800}{390093678645019159048399035309778602971092439474809} a^{11} + \frac{121574453173592987880631224697197967548892484751139}{390093678645019159048399035309778602971092439474809} a^{10} + \frac{171285719690957602073172321796840437858950264624373}{390093678645019159048399035309778602971092439474809} a^{9} - \frac{2671056587832049584015891611960282752733800683217}{390093678645019159048399035309778602971092439474809} a^{8} + \frac{26907513423359663115846552928898728514077861460161}{390093678645019159048399035309778602971092439474809} a^{7} + \frac{108651037073796508140024550619910022787014326088847}{390093678645019159048399035309778602971092439474809} a^{6} - \frac{142720114408560143274035645932565869535213438358303}{390093678645019159048399035309778602971092439474809} a^{5} + \frac{27221271043321912411669508716717552844428533672791}{390093678645019159048399035309778602971092439474809} a^{4} - \frac{109342023339605431344090076985466580782657318380049}{390093678645019159048399035309778602971092439474809} a^{3} + \frac{29103213523277467049568410086174932124507710535347}{390093678645019159048399035309778602971092439474809} a^{2} - \frac{165513758322712583648966591971058862518721952587566}{390093678645019159048399035309778602971092439474809} a - \frac{101649908437883463671610329250028578614100335713415}{390093678645019159048399035309778602971092439474809}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{170}$, which has order $1360$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_4^2$ (as 18T109):
| A solvable group of order 288 |
| The 32 conjugacy class representatives for $C_2\times A_4^2$ |
| Character table for $C_2\times A_4^2$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{9})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| 71 | Data not computed | ||||||