Normalized defining polynomial
\( x^{18} - 9 x^{17} + 60 x^{16} - 268 x^{15} + 1272 x^{14} - 5004 x^{13} + 22294 x^{12} - 81192 x^{11} + 315630 x^{10} - 978324 x^{9} + 3218604 x^{8} - 8208228 x^{7} + 22683008 x^{6} - 45561114 x^{5} + 102647091 x^{4} - 147782137 x^{3} + 257711352 x^{2} - 208331724 x + 258264152 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7041044961999737113734118289433303=-\,3^{24}\cdot 7^{12}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1449=3^{2}\cdot 7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1449}(1,·)$, $\chi_{1449}(898,·)$, $\chi_{1449}(967,·)$, $\chi_{1449}(781,·)$, $\chi_{1449}(277,·)$, $\chi_{1449}(22,·)$, $\chi_{1449}(919,·)$, $\chi_{1449}(1243,·)$, $\chi_{1449}(988,·)$, $\chi_{1449}(415,·)$, $\chi_{1449}(484,·)$, $\chi_{1449}(1381,·)$, $\chi_{1449}(298,·)$, $\chi_{1449}(1264,·)$, $\chi_{1449}(436,·)$, $\chi_{1449}(760,·)$, $\chi_{1449}(505,·)$, $\chi_{1449}(1402,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{508} a^{16} - \frac{31}{127} a^{15} + \frac{43}{254} a^{14} - \frac{7}{127} a^{13} + \frac{19}{127} a^{12} - \frac{1}{254} a^{11} - \frac{20}{127} a^{10} - \frac{45}{254} a^{9} - \frac{59}{254} a^{8} - \frac{89}{254} a^{7} - \frac{6}{127} a^{6} + \frac{1}{127} a^{5} - \frac{87}{254} a^{4} + \frac{10}{127} a^{3} + \frac{37}{508} a^{2} - \frac{97}{254} a$, $\frac{1}{655339075270377545057067299748321148925610824446442372} a^{17} + \frac{72794240482453252881892076882424603260161343699677}{163834768817594386264266824937080287231402706111610593} a^{16} + \frac{77656360983461315844646289864437987017548517738757623}{327669537635188772528533649874160574462805412223221186} a^{15} + \frac{5456155039402531012509910006210546445601416412496969}{163834768817594386264266824937080287231402706111610593} a^{14} - \frac{10566856397539410520299474096772711367531274316212915}{327669537635188772528533649874160574462805412223221186} a^{13} - \frac{264166910673261171582937700986113148507488690786675}{327669537635188772528533649874160574462805412223221186} a^{12} + \frac{77152093841148929908035469686469254639794895294210899}{327669537635188772528533649874160574462805412223221186} a^{11} + \frac{15187457485761688265069513003343788300575663372550934}{163834768817594386264266824937080287231402706111610593} a^{10} + \frac{5818424889251718903437484607819122639776795643952227}{163834768817594386264266824937080287231402706111610593} a^{9} - \frac{14221507295301025366475906549274161408131820364011038}{163834768817594386264266824937080287231402706111610593} a^{8} - \frac{48368112484063274260869033195842501687158258905294812}{163834768817594386264266824937080287231402706111610593} a^{7} - \frac{161956713095422372162579670125521040544759755256393773}{327669537635188772528533649874160574462805412223221186} a^{6} + \frac{89654539960765361723726329269787067943672299001545191}{327669537635188772528533649874160574462805412223221186} a^{5} - \frac{113951746908162470487956501860959884112756771299142931}{327669537635188772528533649874160574462805412223221186} a^{4} - \frac{169695659319046430339380520163771167495802222725443581}{655339075270377545057067299748321148925610824446442372} a^{3} + \frac{19590830193091615510796981687565269019218749738688972}{163834768817594386264266824937080287231402706111610593} a^{2} + \frac{116225555424272345381763811285183106310355429659093127}{327669537635188772528533649874160574462805412223221186} a + \frac{56789695129976933695975865024667100845999013045501}{1290037549744837687120211219977010135680336268595359}$
Class group and class number
$C_{3}\times C_{6}\times C_{3942}$, which has order $70956$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.79827687.1, 6.0.191666276487.3, 6.0.29212967.1, 6.0.191666276487.2, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |