Normalized defining polynomial
\( x^{18} - 81 x^{16} + 3735 x^{14} - 95193 x^{12} + 1676052 x^{10} - 25382 x^{9} - 15545754 x^{8} + 6167826 x^{7} + 129779769 x^{6} - 281435616 x^{5} + 167351805 x^{4} + 3605893830 x^{3} + 7379910756 x^{2} - 10205696088 x + 65865831261 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6978814404767355448133435215913472000000000=-\,2^{18}\cdot 3^{44}\cdot 5^{9}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $240.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3780=2^{2}\cdot 3^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3780}(1,·)$, $\chi_{3780}(961,·)$, $\chi_{3780}(3721,·)$, $\chi_{3780}(1639,·)$, $\chi_{3780}(2221,·)$, $\chi_{3780}(2899,·)$, $\chi_{3780}(2839,·)$, $\chi_{3780}(2521,·)$, $\chi_{3780}(79,·)$, $\chi_{3780}(2461,·)$, $\chi_{3780}(3481,·)$, $\chi_{3780}(1339,·)$, $\chi_{3780}(2599,·)$, $\chi_{3780}(1579,·)$, $\chi_{3780}(1261,·)$, $\chi_{3780}(1201,·)$, $\chi_{3780}(379,·)$, $\chi_{3780}(319,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{1}{7} a^{4} - \frac{2}{7} a^{2} - \frac{1}{7}$, $\frac{1}{7} a^{7} + \frac{1}{7} a^{5} - \frac{2}{7} a^{3} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{3}{7} a^{4} + \frac{1}{7} a^{2} + \frac{1}{7}$, $\frac{1}{7} a^{9} - \frac{3}{7} a^{5} + \frac{1}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{7} a^{10} - \frac{3}{7} a^{4} + \frac{2}{7} a^{2} - \frac{3}{7}$, $\frac{1}{7} a^{11} - \frac{3}{7} a^{5} + \frac{2}{7} a^{3} - \frac{3}{7} a$, $\frac{1}{49} a^{12} + \frac{2}{49} a^{10} - \frac{3}{49} a^{8} + \frac{1}{49} a^{6} + \frac{9}{49} a^{4} - \frac{10}{49} a^{2} - \frac{6}{49}$, $\frac{1}{49} a^{13} + \frac{2}{49} a^{11} - \frac{3}{49} a^{9} + \frac{1}{49} a^{7} + \frac{9}{49} a^{5} - \frac{10}{49} a^{3} - \frac{6}{49} a$, $\frac{1}{49} a^{14} + \frac{2}{7} a^{4} - \frac{2}{7} a^{2} - \frac{9}{49}$, $\frac{1}{49} a^{15} + \frac{2}{7} a^{5} - \frac{2}{7} a^{3} - \frac{9}{49} a$, $\frac{1}{49} a^{16} + \frac{3}{7} a^{4} + \frac{19}{49} a^{2} + \frac{2}{7}$, $\frac{1}{3826258349043559089884512402928375234027501725362009530994241} a^{17} - \frac{21639734654688427317921059405598810232117807240147214821510}{3826258349043559089884512402928375234027501725362009530994241} a^{16} - \frac{1893215141131343961438185463825283732339824999767854325033}{546608335577651298554930343275482176289643103623144218713463} a^{15} - \frac{21818736008796745615954728001552911737663391054621332948823}{3826258349043559089884512402928375234027501725362009530994241} a^{14} - \frac{16332406375166316576259955922316556183384444621296344719363}{3826258349043559089884512402928375234027501725362009530994241} a^{13} - \frac{2584402833647955899931876794960779708861270858441080252967}{3826258349043559089884512402928375234027501725362009530994241} a^{12} + \frac{171502361015111935055941125382936378198206066370523573189037}{3826258349043559089884512402928375234027501725362009530994241} a^{11} - \frac{21401979460514194558442276002827550642561690673484416118922}{3826258349043559089884512402928375234027501725362009530994241} a^{10} - \frac{257633957726817204408228178047780597532332407083000795400004}{3826258349043559089884512402928375234027501725362009530994241} a^{9} - \frac{113377784675601638974863527422383585768508083863312138945698}{3826258349043559089884512402928375234027501725362009530994241} a^{8} + \frac{186119678331719643704433363601731084448268964178548092949521}{3826258349043559089884512402928375234027501725362009530994241} a^{7} + \frac{260860763936397366889632704534704210223956990041334549279640}{3826258349043559089884512402928375234027501725362009530994241} a^{6} - \frac{1738804484848360123054516676995217963253329167694052935217817}{3826258349043559089884512402928375234027501725362009530994241} a^{5} + \frac{375893841952659562300484483342839772873138623222554870396937}{3826258349043559089884512402928375234027501725362009530994241} a^{4} + \frac{258930770691894833919067505598636700137282695115376523758554}{546608335577651298554930343275482176289643103623144218713463} a^{3} - \frac{168774702159914303005312084755897408481710058387967948330177}{546608335577651298554930343275482176289643103623144218713463} a^{2} - \frac{551283946709850283786566656074208319321041997934596981306294}{3826258349043559089884512402928375234027501725362009530994241} a - \frac{9812978546406888167781601662718097132789454257644071885358}{78086905082521614079275763325068882327091871946163459816209}$
Class group and class number
$C_{3}\times C_{3}\times C_{1858158}$, which has order $16723422$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4392158.291236831 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\zeta_{9})^+\), 6.0.52488000.1, 9.9.3691950281939241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | $18$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.22.2 | $x^{9} + 9 x^{7} + 3 x^{6} + 18 x^{5} + 51$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.2 | $x^{9} + 9 x^{7} + 3 x^{6} + 18 x^{5} + 51$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.9.6.2 | $x^{9} - 49 x^{3} + 686$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 7.9.6.2 | $x^{9} - 49 x^{3} + 686$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |