Normalized defining polynomial
\( x^{18} + 7 x^{16} - 56 x^{14} + 358 x^{12} - 1094 x^{10} + 1993 x^{8} - 1574 x^{6} + 817 x^{4} - 506 x^{2} + 783 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-69712928281989630615234375=-\,3^{9}\cdot 5^{12}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{15} a^{6} + \frac{4}{15} a^{4} + \frac{7}{15} a^{2} - \frac{1}{5}$, $\frac{1}{15} a^{7} - \frac{1}{15} a^{5} + \frac{2}{15} a^{3} + \frac{7}{15} a$, $\frac{1}{45} a^{8} + \frac{7}{15} a^{4} + \frac{14}{45} a^{2} - \frac{2}{5}$, $\frac{1}{90} a^{9} - \frac{1}{90} a^{8} + \frac{1}{15} a^{5} - \frac{7}{30} a^{4} + \frac{22}{45} a^{3} + \frac{31}{90} a^{2} + \frac{2}{15} a - \frac{3}{10}$, $\frac{1}{90} a^{10} - \frac{1}{90} a^{8} - \frac{1}{6} a^{5} - \frac{1}{90} a^{4} - \frac{1}{6} a^{3} + \frac{1}{90} a^{2} - \frac{1}{6} a - \frac{1}{10}$, $\frac{1}{90} a^{11} - \frac{1}{90} a^{8} - \frac{1}{30} a^{6} + \frac{1}{18} a^{5} + \frac{2}{15} a^{4} - \frac{1}{2} a^{3} + \frac{1}{9} a^{2} + \frac{1}{30} a + \frac{3}{10}$, $\frac{1}{1350} a^{12} - \frac{1}{675} a^{10} - \frac{1}{270} a^{8} - \frac{1}{30} a^{7} + \frac{7}{270} a^{6} - \frac{2}{15} a^{5} + \frac{38}{135} a^{4} + \frac{4}{15} a^{3} - \frac{56}{675} a^{2} + \frac{1}{10} a - \frac{23}{50}$, $\frac{1}{1350} a^{13} - \frac{1}{675} a^{11} - \frac{1}{270} a^{9} - \frac{1}{90} a^{8} + \frac{7}{270} a^{7} - \frac{7}{135} a^{5} + \frac{4}{15} a^{4} - \frac{281}{675} a^{3} + \frac{31}{90} a^{2} + \frac{31}{150} a + \frac{1}{5}$, $\frac{1}{4050} a^{14} + \frac{1}{675} a^{10} - \frac{7}{810} a^{8} + \frac{1}{45} a^{6} - \frac{1}{6} a^{5} - \frac{292}{675} a^{4} + \frac{1}{3} a^{3} + \frac{149}{810} a^{2} - \frac{1}{6} a + \frac{22}{75}$, $\frac{1}{4050} a^{15} + \frac{1}{675} a^{11} + \frac{1}{405} a^{9} - \frac{1}{90} a^{8} + \frac{1}{45} a^{7} - \frac{1}{30} a^{6} - \frac{22}{675} a^{5} - \frac{11}{30} a^{4} + \frac{1}{162} a^{3} + \frac{1}{9} a^{2} - \frac{6}{25} a + \frac{3}{10}$, $\frac{1}{36450} a^{16} + \frac{1}{18225} a^{14} - \frac{2}{6075} a^{12} + \frac{13}{36450} a^{10} + \frac{38}{3645} a^{8} - \frac{1}{30} a^{7} + \frac{173}{6075} a^{6} - \frac{2}{15} a^{5} - \frac{11219}{36450} a^{4} - \frac{7}{30} a^{3} - \frac{623}{18225} a^{2} - \frac{2}{5} a + \frac{281}{675}$, $\frac{1}{36450} a^{17} + \frac{1}{18225} a^{15} - \frac{2}{6075} a^{13} + \frac{13}{36450} a^{11} - \frac{1}{1458} a^{9} + \frac{173}{6075} a^{7} - \frac{1499}{36450} a^{5} - \frac{3458}{18225} a^{3} - \frac{1}{2} a^{2} - \frac{259}{675} a - \frac{1}{2}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3534920.45401 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 3.1.87.1 x3, 6.0.658503.1, 9.1.895152515625.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |