Normalized defining polynomial
\( x^{18} - 8 x^{17} + 121 x^{16} - 218 x^{15} + 5594 x^{14} - 2840 x^{13} + 393586 x^{12} - 1015636 x^{11} + 21825209 x^{10} - 34844136 x^{9} + 556579681 x^{8} + 428932198 x^{7} + 11617030252 x^{6} + 14640502408 x^{5} + 184580325172 x^{4} + 186897927432 x^{3} + 1285667140736 x^{2} + 681176924480 x + 5260791417344 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-696095344015988004005130387702332687426711552=-\,2^{12}\cdot 7^{15}\cdot 11^{9}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $309.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{56} a^{9} + \frac{3}{56} a^{8} - \frac{1}{14} a^{6} + \frac{9}{56} a^{5} - \frac{5}{56} a^{4} - \frac{13}{28} a^{3} - \frac{11}{28} a^{2} - \frac{3}{14} a - \frac{1}{7}$, $\frac{1}{224} a^{10} - \frac{1}{224} a^{9} + \frac{1}{112} a^{8} - \frac{9}{112} a^{7} - \frac{17}{224} a^{6} - \frac{27}{224} a^{5} + \frac{25}{112} a^{4} + \frac{55}{112} a^{3} - \frac{9}{56} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{224} a^{11} + \frac{1}{224} a^{9} + \frac{3}{56} a^{8} + \frac{3}{32} a^{7} + \frac{3}{56} a^{6} + \frac{23}{224} a^{5} + \frac{5}{56} a^{4} + \frac{9}{112} a^{3} - \frac{27}{56} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{224} a^{12} + \frac{1}{224} a^{9} + \frac{11}{224} a^{8} - \frac{13}{112} a^{7} - \frac{3}{28} a^{6} - \frac{5}{224} a^{5} - \frac{1}{4} a^{4} + \frac{47}{112} a^{3} + \frac{9}{56} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{224} a^{13} - \frac{1}{28} a^{8} - \frac{3}{112} a^{7} + \frac{1}{56} a^{6} + \frac{31}{224} a^{5} - \frac{1}{28} a^{4} + \frac{5}{16} a^{3} + \frac{11}{56} a^{2} + \frac{2}{7}$, $\frac{1}{448} a^{14} - \frac{1}{448} a^{13} - \frac{1}{448} a^{12} - \frac{1}{448} a^{11} - \frac{1}{448} a^{10} + \frac{3}{448} a^{9} - \frac{15}{448} a^{8} - \frac{23}{448} a^{7} + \frac{1}{56} a^{6} + \frac{11}{224} a^{5} + \frac{11}{56} a^{4} - \frac{9}{28} a^{2} + \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{448} a^{15} + \frac{1}{224} a^{9} + \frac{3}{112} a^{8} - \frac{1}{448} a^{7} + \frac{1}{28} a^{6} + \frac{55}{224} a^{5} + \frac{3}{16} a^{4} + \frac{1}{28} a^{3} - \frac{1}{28} a^{2} - \frac{3}{14} a + \frac{2}{7}$, $\frac{1}{896} a^{16} - \frac{1}{448} a^{12} + \frac{1}{224} a^{9} + \frac{5}{896} a^{8} + \frac{13}{112} a^{7} - \frac{1}{8} a^{6} + \frac{19}{224} a^{5} + \frac{3}{224} a^{4} + \frac{1}{112} a^{3} + \frac{13}{28} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{151595431079284393606884487091216931883711974359878466874198171778448878101399620096} a^{17} + \frac{37950645467899186309847257110595977472459993317501172512055914648409439458103149}{151595431079284393606884487091216931883711974359878466874198171778448878101399620096} a^{16} + \frac{52011018194695461703252866612823185747203890193048434864823654569176942572460077}{75797715539642196803442243545608465941855987179939233437099085889224439050699810048} a^{15} - \frac{4330201290364522387893410926624109503718863411307210589364942183216398141764213}{18949428884910549200860560886402116485463996794984808359274771472306109762674952512} a^{14} + \frac{140786027001431855290502309548802767589646034048449764689576515645347754487172489}{75797715539642196803442243545608465941855987179939233437099085889224439050699810048} a^{13} - \frac{79299324999126695916059274113757560365521042024249916141160127665444771803769671}{75797715539642196803442243545608465941855987179939233437099085889224439050699810048} a^{12} + \frac{44890695190995421239879284521502296618017873431340871211335795567581410821209587}{37898857769821098401721121772804232970927993589969616718549542944612219525349905024} a^{11} - \frac{614846129965662891763851686478561514065883454949222602240590377531594451631409}{18949428884910549200860560886402116485463996794984808359274771472306109762674952512} a^{10} + \frac{334699119402476980243286439096298250017497599592110213521634634933743742028166225}{151595431079284393606884487091216931883711974359878466874198171778448878101399620096} a^{9} - \frac{8082583776439646573881367681296723401554411748364778573820660622445660338434993619}{151595431079284393606884487091216931883711974359878466874198171778448878101399620096} a^{8} + \frac{7776846448131097956006225672678751823157226680678799230460296383029246850715016593}{75797715539642196803442243545608465941855987179939233437099085889224439050699810048} a^{7} - \frac{780932814871960303757194513386211312171782077372464437888946349272269780691467055}{9474714442455274600430280443201058242731998397492404179637385736153054881337476256} a^{6} + \frac{6570467869495898682680600870476712287535921531058273580239434347671753814864584479}{37898857769821098401721121772804232970927993589969616718549542944612219525349905024} a^{5} + \frac{9119932101550731211764361962670734804089911241710403137703197267055154715830665653}{37898857769821098401721121772804232970927993589969616718549542944612219525349905024} a^{4} - \frac{2435512097514886554140618959687229894952687258109850456837323688804976685046020893}{18949428884910549200860560886402116485463996794984808359274771472306109762674952512} a^{3} + \frac{495477227070081397012666671813882176572364403017811224530062349040785038587109509}{2368678610613818650107570110800264560682999599373101044909346434038263720334369064} a^{2} + \frac{99453175119573516670875395323788040150311239680121580643990051718072524775107811}{2368678610613818650107570110800264560682999599373101044909346434038263720334369064} a + \frac{124412512165284539623011536296343545201932236405917834513053742359974323922981833}{296084826326727331263446263850033070085374949921637630613668304254782965041796133}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{56}\times C_{1865136}$, which has order $835580928$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2494653063.4840164 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-1463}) \), 3.3.17689.2, 3.3.15884.1, Deg 6, 6.0.55390624333583.2, 9.9.471484994327458496.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $19$ | 19.6.5.4 | $x^{6} + 76$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.4 | $x^{6} + 76$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.4 | $x^{6} + 76$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |