Normalized defining polynomial
\( x^{18} + 3 x^{16} + 54 x^{14} + 493 x^{12} - 258 x^{10} - 6021 x^{8} + 5140 x^{6} + 22089 x^{4} - 38349 x^{2} + 16875 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6923768607655667252896641526323=-\,3^{9}\cdot 163^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{10} - \frac{1}{6} a^{7} + \frac{1}{9} a^{6} - \frac{1}{6} a^{5} - \frac{5}{18} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{450} a^{13} - \frac{31}{450} a^{11} - \frac{1}{75} a^{9} - \frac{1}{6} a^{8} + \frac{28}{225} a^{7} - \frac{1}{6} a^{6} + \frac{97}{450} a^{5} + \frac{1}{3} a^{4} + \frac{4}{25} a^{3} - \frac{1}{2} a^{2} + \frac{1}{50} a$, $\frac{1}{13950} a^{14} - \frac{1}{2325} a^{12} + \frac{719}{13950} a^{10} + \frac{431}{13950} a^{8} - \frac{21}{775} a^{6} - \frac{1}{2} a^{5} + \frac{2486}{6975} a^{4} - \frac{1}{2} a^{3} - \frac{661}{2325} a^{2} - \frac{1}{31}$, $\frac{1}{13950} a^{15} - \frac{1}{2325} a^{13} + \frac{719}{13950} a^{11} + \frac{431}{13950} a^{9} - \frac{21}{775} a^{7} - \frac{1}{6} a^{6} + \frac{2486}{6975} a^{5} - \frac{1}{6} a^{4} - \frac{661}{2325} a^{3} + \frac{1}{3} a^{2} - \frac{1}{31} a$, $\frac{1}{132176250} a^{16} - \frac{3239}{132176250} a^{14} + \frac{2210267}{132176250} a^{12} + \frac{6889879}{132176250} a^{10} - \frac{9786488}{66088125} a^{8} - \frac{15547829}{132176250} a^{6} - \frac{1}{2} a^{5} + \frac{1198633}{132176250} a^{4} + \frac{2761588}{22029375} a^{2} + \frac{8181}{23498}$, $\frac{1}{132176250} a^{17} - \frac{3239}{132176250} a^{15} - \frac{46511}{44058750} a^{13} - \frac{2794607}{44058750} a^{11} - \frac{2737088}{66088125} a^{9} - \frac{4986793}{44058750} a^{7} - \frac{1}{6} a^{6} - \frac{6438217}{132176250} a^{5} + \frac{1}{3} a^{4} - \frac{3406637}{22029375} a^{3} + \frac{1}{3} a^{2} + \frac{110533}{587450} a$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{22997}{5287050} a^{17} - \frac{46358}{2643525} a^{15} - \frac{671519}{2643525} a^{13} - \frac{4241107}{1762350} a^{11} - \frac{3766087}{2643525} a^{9} + \frac{128948287}{5287050} a^{7} + \frac{1895972}{528705} a^{5} - \frac{26696956}{293725} a^{3} + \frac{40301567}{587450} a + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28381401.6524 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.79707.1 x3, 3.3.26569.1, 6.0.19059617547.1, 6.0.717363.1 x2, 6.0.19059617547.2, 9.3.506394978606243.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.717363.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $163$ | 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |