Normalized defining polynomial
\( x^{18} + 29 x^{16} + 338 x^{14} + 2070 x^{12} + 7345 x^{10} + 15603 x^{8} + 19532 x^{6} + 13258 x^{4} + 3756 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-691976677792049302709773533184=-\,2^{18}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} + \frac{5}{19} a^{12} + \frac{7}{19} a^{10} - \frac{8}{19} a^{8} - \frac{1}{19} a^{6} + \frac{6}{19} a^{4} - \frac{9}{19} a^{2} - \frac{9}{19}$, $\frac{1}{19} a^{15} + \frac{5}{19} a^{13} + \frac{7}{19} a^{11} - \frac{8}{19} a^{9} - \frac{1}{19} a^{7} + \frac{6}{19} a^{5} - \frac{9}{19} a^{3} - \frac{9}{19} a$, $\frac{1}{60401} a^{16} + \frac{529}{60401} a^{14} + \frac{7339}{60401} a^{12} + \frac{28436}{60401} a^{10} - \frac{1162}{3553} a^{8} - \frac{9676}{60401} a^{6} + \frac{1553}{3179} a^{4} - \frac{6055}{60401} a^{2} + \frac{18559}{60401}$, $\frac{1}{60401} a^{17} + \frac{529}{60401} a^{15} + \frac{7339}{60401} a^{13} + \frac{28436}{60401} a^{11} - \frac{1162}{3553} a^{9} - \frac{9676}{60401} a^{7} + \frac{1553}{3179} a^{5} - \frac{6055}{60401} a^{3} + \frac{18559}{60401} a$
Class group and class number
$C_{178}$, which has order $178$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4585}{60401} a^{17} + \frac{123869}{60401} a^{15} + \frac{1302990}{60401} a^{13} + \frac{6874910}{60401} a^{11} + \frac{1155894}{3553} a^{9} + \frac{30055930}{60401} a^{7} + \frac{20972755}{60401} a^{5} + \frac{1408329}{60401} a^{3} - \frac{3699634}{60401} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 290542.983381 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $D_{18}$ |
| Character table for $D_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.1129.1, 6.0.81577024.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1129 | Data not computed | ||||||