Normalized defining polynomial
\( x^{18} - 9919 x^{15} + 103266244 x^{12} + 25079348385 x^{9} + 2032589480652 x^{6} - 3842823830391 x^{3} + 7625597484987 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6916534707190682077071725436128319105898712657538875913221307=-\,3^{27}\cdot 7^{12}\cdot 13^{12}\cdot 109^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2398.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{22} a^{6} + \frac{1}{22} a^{3} - \frac{7}{22}$, $\frac{1}{66} a^{7} + \frac{23}{66} a^{4} - \frac{29}{66} a$, $\frac{1}{594} a^{8} + \frac{287}{594} a^{5} + \frac{235}{594} a^{2}$, $\frac{1}{1782} a^{9} - \frac{37}{1782} a^{6} - \frac{89}{1782} a^{3} + \frac{3}{11}$, $\frac{1}{16038} a^{10} + \frac{2}{729} a^{7} - \frac{4}{8019} a^{4} - \frac{5}{22} a$, $\frac{1}{48114} a^{11} - \frac{37}{48114} a^{8} + \frac{8821}{48114} a^{5} - \frac{41}{297} a^{2}$, $\frac{1}{100667286324} a^{12} + \frac{8126185}{50333643162} a^{9} - \frac{1119122171}{100667286324} a^{6} - \frac{4986895}{11507463} a^{3} - \frac{2537531}{5114428}$, $\frac{1}{2718016730748} a^{13} + \frac{18185888}{679504182687} a^{10} - \frac{12360867389}{2718016730748} a^{7} - \frac{1983148603}{5592627018} a^{4} + \frac{68599513}{138089556} a$, $\frac{1}{73386451730196} a^{14} - \frac{151287658}{18346612932549} a^{11} - \frac{42188211485}{73386451730196} a^{8} + \frac{53954280329}{151000929486} a^{5} + \frac{1851210145}{3728418012} a^{2}$, $\frac{1}{214362039131863502600556} a^{15} + \frac{64005122792}{53590509782965875650139} a^{12} + \frac{38497386102965415613}{214362039131863502600556} a^{9} + \frac{2012847113532010397}{441074154592311733746} a^{6} + \frac{4247284411369354645}{10890719866476832932} a^{3} - \frac{951326703447}{2286387982262}$, $\frac{1}{5787775056560314570215012} a^{16} + \frac{64005122792}{1446943764140078642553753} a^{13} + \frac{38497386102965415613}{5787775056560314570215012} a^{10} + \frac{82208147948497780169}{11909002173992416811142} a^{7} - \frac{124461223101538670915}{294049436394874489164} a^{4} + \frac{83277313534825}{679057230731814} a$, $\frac{1}{156269926527128493395805324} a^{17} + \frac{64005122792}{39067481631782123348951331} a^{14} + \frac{38497386102965415613}{156269926527128493395805324} a^{11} + \frac{82208147948497780169}{321543058697795253900834} a^{8} - \frac{418510659496413160079}{7939334782661611207428} a^{5} - \frac{3312008840124245}{18334545229758978} a^{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{6}\times C_{18}\times C_{990}\times C_{2970}$, which has order $77165233200$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{110674342}{442896775065833683059} a^{15} - \frac{1097974033975}{442896775065833683059} a^{12} + \frac{11430909140143078}{442896775065833683059} a^{9} + \frac{11337404655348226}{1822620473521949313} a^{6} + \frac{11441311235996338}{22501487327431473} a^{3} + \frac{35247270609}{1143193991131} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78066072406331.89 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.295159683.1 x3, 3.3.47155689.4, 6.0.261357715405981467.1, 6.0.6670977015194163.2, Deg 6 x2, 9.3.1518391112020733837237059617363.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $13$ | 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $109$ | 109.3.2.3 | $x^{3} - 3924$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 109.3.2.3 | $x^{3} - 3924$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.3.2.3 | $x^{3} - 3924$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.3.2.3 | $x^{3} - 3924$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.3.2.3 | $x^{3} - 3924$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.3.2.3 | $x^{3} - 3924$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |