Normalized defining polynomial
\( x^{18} + 7 x^{16} - 46 x^{15} + 314 x^{14} - 784 x^{13} + 1633 x^{12} - 8962 x^{11} + 34964 x^{10} + 25180 x^{9} - 53723 x^{8} + 135014 x^{7} + 552807 x^{6} - 1492424 x^{5} + 3232214 x^{4} - 3603978 x^{3} + 3591174 x^{2} - 1826896 x + 994969 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-691304233720361896816117357477888=-\,2^{18}\cdot 13^{15}\cdot 61^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{162244} a^{16} - \frac{4327}{40561} a^{15} - \frac{9057}{81122} a^{14} - \frac{8853}{81122} a^{13} - \frac{19598}{40561} a^{12} - \frac{15997}{81122} a^{11} + \frac{61521}{162244} a^{10} - \frac{11247}{40561} a^{9} + \frac{53695}{162244} a^{8} + \frac{2032}{40561} a^{7} - \frac{12719}{81122} a^{6} + \frac{35539}{81122} a^{5} - \frac{79803}{162244} a^{4} - \frac{26299}{81122} a^{3} + \frac{51321}{162244} a^{2} + \frac{17560}{40561} a + \frac{53401}{162244}$, $\frac{1}{815664053784538560433755025826893589917076115320559844} a^{17} - \frac{760708448099600124773458553374795401356189086725}{815664053784538560433755025826893589917076115320559844} a^{16} + \frac{22326619814897185167292393809645771721408550338467927}{203916013446134640108438756456723397479269028830139961} a^{15} + \frac{44805945607438049045336998091747383214106283734167085}{407832026892269280216877512913446794958538057660279922} a^{14} + \frac{2607100174618840036361954272696662604575893019298396}{203916013446134640108438756456723397479269028830139961} a^{13} + \frac{1996332772086423496020056963045501187339262673505379}{203916013446134640108438756456723397479269028830139961} a^{12} - \frac{26725522029572813104221438695541896971937917136230267}{815664053784538560433755025826893589917076115320559844} a^{11} - \frac{20523696892075047702384369637429691432389836660048655}{815664053784538560433755025826893589917076115320559844} a^{10} + \frac{222852676559483920365747042276856354380325743791316035}{815664053784538560433755025826893589917076115320559844} a^{9} - \frac{369808448216843701015124197753220292614755250499122879}{815664053784538560433755025826893589917076115320559844} a^{8} - \frac{1561697655835478357859783095606344461809755239572636}{203916013446134640108438756456723397479269028830139961} a^{7} + \frac{75937605309636089369810158880909481470843793044910243}{407832026892269280216877512913446794958538057660279922} a^{6} - \frac{95383729801633612539822272920412745015332812648508863}{815664053784538560433755025826893589917076115320559844} a^{5} + \frac{288225117405459897736159502166840757352724714291677151}{815664053784538560433755025826893589917076115320559844} a^{4} + \frac{31061188148175476464715304257293395018639419493774947}{815664053784538560433755025826893589917076115320559844} a^{3} - \frac{76252690109662269240386326427574407207375737030145185}{815664053784538560433755025826893589917076115320559844} a^{2} - \frac{323463270707350309870253183293746925283223966937392577}{815664053784538560433755025826893589917076115320559844} a + \frac{113173708123920303770526780860195640174254318369921489}{815664053784538560433755025826893589917076115320559844}$
Class group and class number
$C_{2}\times C_{2224}$, which has order $4448$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 230602.64598601736 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-13}) \), 3.3.169.1, 3.3.10309.1, 6.0.23762752.1, 6.0.88421200192.1, 9.9.1095593933629.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 13 | Data not computed | ||||||
| $61$ | 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |