Normalized defining polynomial
\( x^{18} - 7 x^{17} + 183 x^{16} - 1018 x^{15} + 15239 x^{14} - 71437 x^{13} + 783481 x^{12} - 3170897 x^{11} + 27539182 x^{10} - 96044632 x^{9} + 679813833 x^{8} - 1995570269 x^{7} + 11609272935 x^{6} - 27289998619 x^{5} + 129902924239 x^{4} - 221021307185 x^{3} + 845688187315 x^{2} - 799383089986 x + 2368812673291 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6900600992399474037809909297898044762796032=-\,2^{12}\cdot 37^{14}\cdot 83^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $239.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{72340301059730490658510892347424875104315163568769436421232794016333} a^{17} - \frac{156504904217578073621114812633743369390475270483568202562832750489}{72340301059730490658510892347424875104315163568769436421232794016333} a^{16} + \frac{1875535032111826502135654191973233719600672778252973414800747020850}{72340301059730490658510892347424875104315163568769436421232794016333} a^{15} + \frac{5780953742018040882287630505007152841918859460934029221036410775549}{72340301059730490658510892347424875104315163568769436421232794016333} a^{14} + \frac{12009308572539056679311882215684985112080037061130909579096477062160}{72340301059730490658510892347424875104315163568769436421232794016333} a^{13} + \frac{5780780766377535336790244375524428924463747318715446216596150323752}{72340301059730490658510892347424875104315163568769436421232794016333} a^{12} - \frac{19124742729520993569195795317884105135315173428230813848891183021170}{72340301059730490658510892347424875104315163568769436421232794016333} a^{11} + \frac{21666081290750831682919151667975952256897397346804320970609362970804}{72340301059730490658510892347424875104315163568769436421232794016333} a^{10} + \frac{5146511662814659632499273894186034939235488908300697459743465571800}{72340301059730490658510892347424875104315163568769436421232794016333} a^{9} + \frac{10161469575118709328480954517494448863691194862286346127250262327302}{72340301059730490658510892347424875104315163568769436421232794016333} a^{8} - \frac{29261949381542717722131483479810359182009185222699779755348269203333}{72340301059730490658510892347424875104315163568769436421232794016333} a^{7} + \frac{22038864948553330158426546304484283970402294128922063616797613305079}{72340301059730490658510892347424875104315163568769436421232794016333} a^{6} - \frac{7740662541748472993411846270575758504710863011030119861019005828048}{24113433686576830219503630782474958368105054522923145473744264672111} a^{5} + \frac{20466430530183829563040854238658607601860773421552000433740758027975}{72340301059730490658510892347424875104315163568769436421232794016333} a^{4} - \frac{16415132362557454033049033642385260505651947355544180919709514571516}{72340301059730490658510892347424875104315163568769436421232794016333} a^{3} - \frac{6059560288575672700480655170866890458065701724289725588125896249315}{24113433686576830219503630782474958368105054522923145473744264672111} a^{2} - \frac{31087859422698556298047485986762428224174039536043400841196442824430}{72340301059730490658510892347424875104315163568769436421232794016333} a - \frac{20392507428319202297239062372788834298937506962112129079186084112288}{72340301059730490658510892347424875104315163568769436421232794016333}$
Class group and class number
$C_{3}\times C_{6}\times C_{8545770}$, which has order $153823860$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-83}) \), 3.3.1369.1, 3.3.148.1, 6.0.1071620895707.2, 6.0.12524422448.5, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $83$ | 83.6.3.2 | $x^{6} - 6889 x^{2} + 1715361$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 83.6.3.2 | $x^{6} - 6889 x^{2} + 1715361$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 83.6.3.2 | $x^{6} - 6889 x^{2} + 1715361$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |