Normalized defining polynomial
\( x^{18} - 5 x^{17} + 22 x^{16} - 72 x^{15} + 250 x^{14} - 614 x^{13} + 1227 x^{12} - 1923 x^{11} + 3257 x^{10} - 5266 x^{9} + 6472 x^{8} - 4339 x^{7} - 429 x^{6} + 1253 x^{5} - 785 x^{4} - 6372 x^{3} + 6668 x^{2} + 400 x + 5696 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-68835522420844686611068124224=-\,2^{6}\cdot 32009^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5}$, $\frac{1}{50} a^{15} + \frac{3}{50} a^{14} + \frac{1}{25} a^{13} - \frac{2}{25} a^{11} + \frac{3}{50} a^{9} - \frac{21}{50} a^{8} + \frac{17}{50} a^{7} - \frac{1}{25} a^{6} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} + \frac{23}{50} a^{2} - \frac{11}{50} a - \frac{11}{25}$, $\frac{1}{200} a^{16} + \frac{1}{200} a^{15} - \frac{1}{50} a^{14} + \frac{2}{25} a^{13} - \frac{7}{100} a^{12} - \frac{1}{100} a^{11} - \frac{17}{200} a^{10} - \frac{17}{200} a^{9} + \frac{99}{200} a^{8} + \frac{8}{25} a^{7} - \frac{7}{25} a^{6} - \frac{3}{8} a^{5} + \frac{1}{8} a^{4} - \frac{37}{200} a^{3} + \frac{73}{200} a^{2} - \frac{7}{20} a - \frac{12}{25}$, $\frac{1}{774857372236518724075173431200} a^{17} - \frac{822898534399994629701714367}{774857372236518724075173431200} a^{16} + \frac{855894077995963262087543603}{193714343059129681018793357800} a^{15} - \frac{295545767310186877719561651}{9685717152956484050939667890} a^{14} - \frac{3045201333640709539177428387}{387428686118259362037586715600} a^{13} + \frac{58132866706786703543561471}{77485737223651872407517343120} a^{12} - \frac{80173395643487460590473297}{774857372236518724075173431200} a^{11} + \frac{64571301674155242723696137559}{774857372236518724075173431200} a^{10} + \frac{67960558702273836451469991347}{774857372236518724075173431200} a^{9} - \frac{3876483187037217613581750847}{48428585764782420254698339450} a^{8} - \frac{2799753730843089573178086473}{19371434305912968101879335780} a^{7} + \frac{73395727007856680422279594297}{154971474447303744815034686240} a^{6} - \frac{16260594784322884954179775859}{154971474447303744815034686240} a^{5} - \frac{221008987256840841901802152517}{774857372236518724075173431200} a^{4} + \frac{256036779749999710728082932289}{774857372236518724075173431200} a^{3} + \frac{32114372018912672246780210249}{387428686118259362037586715600} a^{2} + \frac{2547051672300002590132953653}{19371434305912968101879335780} a - \frac{50106097852681533603132879}{4842858576478242025469833945}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4621437.941 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times (C_3\times A_4):S_3$ (as 18T156):
| A solvable group of order 432 |
| The 38 conjugacy class representatives for $C_2\times (C_3\times A_4):S_3$ |
| Character table for $C_2\times (C_3\times A_4):S_3$ is not computed |
Intermediate fields
| 3.3.32009.3, 6.0.4098304324.1, 9.9.32795655776729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 32009 | Data not computed | ||||||