Normalized defining polynomial
\( x^{18} - 42 x^{15} + 882 x^{12} - 28836 x^{9} + 272484 x^{6} + 3608064 x^{3} + 23887872 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-68808685040765708380760273519552495616=-\,2^{24}\cdot 3^{32}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{3} a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{18} a^{6}$, $\frac{1}{18} a^{7}$, $\frac{1}{18} a^{8}$, $\frac{1}{54} a^{9}$, $\frac{1}{54} a^{10}$, $\frac{1}{54} a^{11}$, $\frac{1}{5508} a^{12} + \frac{2}{459} a^{9} - \frac{1}{306} a^{6} + \frac{1}{17} a^{3} + \frac{8}{17}$, $\frac{1}{22032} a^{13} + \frac{7}{1224} a^{10} + \frac{11}{408} a^{7} - \frac{31}{204} a^{4} + \frac{25}{68} a$, $\frac{1}{264384} a^{14} - \frac{61}{14688} a^{11} + \frac{11}{4896} a^{8} + \frac{103}{816} a^{5} + \frac{25}{816} a^{2}$, $\frac{1}{20864127744} a^{15} - \frac{17495}{204550272} a^{12} + \frac{85499}{386372736} a^{9} - \frac{4685771}{193186368} a^{6} - \frac{467069}{21465152} a^{3} + \frac{951}{335393}$, $\frac{1}{83456510976} a^{16} - \frac{17495}{818201088} a^{13} - \frac{21208655}{4636472832} a^{10} - \frac{4685771}{772745472} a^{7} + \frac{20063945}{257581824} a^{4} + \frac{84086}{335393} a$, $\frac{1}{1001478131712} a^{17} - \frac{17495}{9818413056} a^{14} - \frac{50056855}{6181963776} a^{11} + \frac{27058279}{3090981888} a^{8} - \frac{409239095}{3090981888} a^{5} + \frac{419479}{4024716} a^{2}$
Class group and class number
$C_{18}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{709}{1227301632} a^{15} - \frac{3683}{204550272} a^{12} + \frac{11303}{22727808} a^{9} - \frac{163703}{11363904} a^{6} + \frac{254509}{3787968} a^{3} + \frac{3473}{19729} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 130568118565.71344 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.1083.1, 6.0.75064896.1, 9.1.129610938470796864.28 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.16.3 | $x^{12} - 30 x^{10} - 5 x^{8} + 19 x^{4} + 30 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_6\times S_3$ | $[2]_{3}^{6}$ | |
| $3$ | 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.22.85 | $x^{12} - 9 x^{11} - 33 x^{9} - 18 x^{8} + 36 x^{7} + 36 x^{6} + 27 x^{5} - 27 x^{4} + 27 x^{3} - 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $22$ | $C_6\times S_3$ | $[2, 5/2]_{2}^{2}$ | |
| 19 | Data not computed | ||||||