Normalized defining polynomial
\( x^{18} + 2 x^{16} + 6 x^{14} - 110 x^{12} - 203 x^{10} + 1084 x^{8} - 883 x^{6} + 2522 x^{4} + 1352 x^{2} + 104 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6870054266002333390340096=-\,2^{27}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{372} a^{12} - \frac{5}{372} a^{10} + \frac{47}{372} a^{8} - \frac{27}{62} a^{6} + \frac{143}{372} a^{4} - \frac{1}{2} a^{3} + \frac{37}{93} a^{2} + \frac{19}{93}$, $\frac{1}{372} a^{13} - \frac{5}{372} a^{11} + \frac{47}{372} a^{9} - \frac{27}{62} a^{7} + \frac{143}{372} a^{5} - \frac{1}{2} a^{4} + \frac{37}{93} a^{3} + \frac{19}{93} a$, $\frac{1}{1860} a^{14} - \frac{1}{1860} a^{12} + \frac{71}{620} a^{10} + \frac{53}{465} a^{8} + \frac{53}{1860} a^{6} - \frac{1}{2} a^{5} + \frac{29}{155} a^{4} + \frac{11}{186} a^{2} + \frac{76}{465}$, $\frac{1}{1860} a^{15} - \frac{1}{1860} a^{13} + \frac{71}{620} a^{11} + \frac{53}{465} a^{9} + \frac{53}{1860} a^{7} - \frac{1}{2} a^{6} + \frac{29}{155} a^{5} + \frac{11}{186} a^{3} + \frac{76}{465} a$, $\frac{1}{6272543100} a^{16} + \frac{420332}{1568135775} a^{14} + \frac{166796}{1568135775} a^{12} - \frac{131389694}{1568135775} a^{10} + \frac{473911657}{2090847700} a^{8} + \frac{36941641}{209084770} a^{6} + \frac{499788749}{2090847700} a^{4} - \frac{153126038}{522711925} a^{2} - \frac{184878001}{1568135775}$, $\frac{1}{6272543100} a^{17} + \frac{420332}{1568135775} a^{15} + \frac{166796}{1568135775} a^{13} - \frac{131389694}{1568135775} a^{11} + \frac{473911657}{2090847700} a^{9} + \frac{36941641}{209084770} a^{7} + \frac{499788749}{2090847700} a^{5} - \frac{153126038}{522711925} a^{3} - \frac{184878001}{1568135775} a$
Class group and class number
$C_{6}$, which has order $6$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26737.5967738 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-26}) \), 3.1.104.1 x3, 3.3.169.1, 6.0.1124864.1, 6.0.190102016.3 x2, 6.0.190102016.1, 9.3.32127240704.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.190102016.3 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $13$ | 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |