Normalized defining polynomial
\( x^{18} - 6 x^{17} + 7 x^{16} + 5 x^{15} - 123 x^{14} + 2007 x^{13} - 10303 x^{12} + 16857 x^{11} + 45543 x^{10} - 311864 x^{9} + 844354 x^{8} - 1438355 x^{7} + 1685627 x^{6} - 1365187 x^{5} + 739367 x^{4} - 280422 x^{3} + 121521 x^{2} - 68391 x + 19363 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-68313613530252822324639135694848=-\,2^{18}\cdot 3^{9}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{7232936414078024364800687284486} a^{17} - \frac{209139205740835534228658344389}{3616468207039012182400343642243} a^{16} + \frac{372189180383925961730725025457}{3616468207039012182400343642243} a^{15} - \frac{898916844377703630161447119555}{7232936414078024364800687284486} a^{14} + \frac{987683303995524676045174913859}{7232936414078024364800687284486} a^{13} - \frac{484413010097609683360012933639}{7232936414078024364800687284486} a^{12} + \frac{2298299638365223827599912370353}{7232936414078024364800687284486} a^{11} + \frac{3167128980904388948183522091701}{7232936414078024364800687284486} a^{10} + \frac{59013929104936916749071822884}{212733423943471304847079037779} a^{9} - \frac{1407056054345553382770936824159}{3616468207039012182400343642243} a^{8} + \frac{3588836602838893971466662761613}{7232936414078024364800687284486} a^{7} - \frac{1820129902386627410600658566543}{7232936414078024364800687284486} a^{6} - \frac{852319428233451477531857865381}{7232936414078024364800687284486} a^{5} + \frac{1675680272002358129442780149417}{7232936414078024364800687284486} a^{4} + \frac{933581945408891616098117551723}{3616468207039012182400343642243} a^{3} - \frac{18358007557638527091705181706}{3616468207039012182400343642243} a^{2} - \frac{1049631898959352882720089273134}{3616468207039012182400343642243} a + \frac{53212083817262512660411910725}{425466847886942609694158075558}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{106162196638896905020}{15580983648847492259} a^{17} + \frac{526714789706723237266}{15580983648847492259} a^{16} - \frac{196078708992008114970}{15580983648847492259} a^{15} - \frac{734564677077314019126}{15580983648847492259} a^{14} + \frac{12295069454705809723744}{15580983648847492259} a^{13} - \frac{200297752502919658061611}{15580983648847492259} a^{12} + \frac{885761170821310038397934}{15580983648847492259} a^{11} - \frac{869600584979944663204310}{15580983648847492259} a^{10} - \frac{337545615683961262781150}{916528449932205427} a^{9} + \frac{27148633111277920927860791}{15580983648847492259} a^{8} - \frac{61441076957859074312888696}{15580983648847492259} a^{7} + \frac{88881859084804636681073582}{15580983648847492259} a^{6} - \frac{86627705791182808539114610}{15580983648847492259} a^{5} + \frac{54947258915451773425186249}{15580983648847492259} a^{4} - \frac{21414207147504007514840398}{15580983648847492259} a^{3} + \frac{7524609636783242255089740}{15580983648847492259} a^{2} - \frac{5084799422095966362762640}{15580983648847492259} a + \frac{116391921529521596088022}{916528449932205427} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 272590163.0199287 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1304.1, 6.0.717363.1, 6.0.45911232.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $163$ | $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 163.2.1.2 | $x^{2} + 652$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.2 | $x^{2} + 652$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.2 | $x^{2} + 652$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 163.6.5.5 | $x^{6} + 10432$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |