Normalized defining polynomial
\( x^{18} - 7 x^{17} + 31 x^{16} - 98 x^{15} + 331 x^{14} - 957 x^{13} + 2693 x^{12} - 6227 x^{11} + 15226 x^{10} - 30674 x^{9} + 66392 x^{8} - 111391 x^{7} + 216508 x^{6} - 293668 x^{5} + 517517 x^{4} - 511304 x^{3} + 833369 x^{2} - 453934 x + 713641 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-680129765110548404696137774571=-\,11^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(209=11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{209}(1,·)$, $\chi_{209}(131,·)$, $\chi_{209}(197,·)$, $\chi_{209}(199,·)$, $\chi_{209}(23,·)$, $\chi_{209}(142,·)$, $\chi_{209}(144,·)$, $\chi_{209}(87,·)$, $\chi_{209}(153,·)$, $\chi_{209}(111,·)$, $\chi_{209}(100,·)$, $\chi_{209}(43,·)$, $\chi_{209}(45,·)$, $\chi_{209}(175,·)$, $\chi_{209}(177,·)$, $\chi_{209}(54,·)$, $\chi_{209}(120,·)$, $\chi_{209}(188,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} - \frac{12}{37} a^{15} + \frac{8}{37} a^{14} + \frac{7}{37} a^{13} + \frac{2}{37} a^{12} + \frac{6}{37} a^{11} + \frac{18}{37} a^{10} - \frac{7}{37} a^{9} + \frac{3}{37} a^{8} + \frac{10}{37} a^{7} + \frac{11}{37} a^{6} - \frac{18}{37} a^{5} + \frac{12}{37} a^{4} - \frac{8}{37} a^{3} + \frac{4}{37} a^{2} + \frac{14}{37} a - \frac{14}{37}$, $\frac{1}{28457777823908436935405793946214340663563} a^{17} - \frac{237595025782776872540170486702865567274}{28457777823908436935405793946214340663563} a^{16} - \frac{12258887164629929159459016023621380345437}{28457777823908436935405793946214340663563} a^{15} + \frac{8280097195585768469456862774160164774581}{28457777823908436935405793946214340663563} a^{14} + \frac{11862586698276224228301778034099339949891}{28457777823908436935405793946214340663563} a^{13} - \frac{5646246221193397306578180503232518117175}{28457777823908436935405793946214340663563} a^{12} - \frac{12673440368371598293107464799259115642299}{28457777823908436935405793946214340663563} a^{11} - \frac{10349552141364950614120209563522760158265}{28457777823908436935405793946214340663563} a^{10} - \frac{9610973594250407378453718903253159313288}{28457777823908436935405793946214340663563} a^{9} - \frac{5960143297318532701612903997057590367307}{28457777823908436935405793946214340663563} a^{8} + \frac{9929843569041625984574128413123656095083}{28457777823908436935405793946214340663563} a^{7} + \frac{7623034380104726107420892426846581433356}{28457777823908436935405793946214340663563} a^{6} - \frac{9604348876139736354561538776239225059868}{28457777823908436935405793946214340663563} a^{5} + \frac{729506287298409805420002919065689042259}{28457777823908436935405793946214340663563} a^{4} + \frac{4834831343607227562401662999367992661778}{28457777823908436935405793946214340663563} a^{3} + \frac{10251310127855850191545705554573076775938}{28457777823908436935405793946214340663563} a^{2} - \frac{11846586489147974672463398730583717574441}{28457777823908436935405793946214340663563} a - \frac{12896555728830716897942688844386021206202}{28457777823908436935405793946214340663563}$
Class group and class number
$C_{2}\times C_{542}$, which has order $1084$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.3.361.1, 6.0.173457251.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | $18$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||