Normalized defining polynomial
\( x^{18} - 11 x^{15} + 65 x^{12} - 99 x^{9} + 130 x^{6} - 44 x^{3} + 8 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-67804051110532132041289728=-\,2^{12}\cdot 3^{20}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{30} a^{12} - \frac{1}{10} a^{9} + \frac{3}{10} a^{6} + \frac{3}{10} a^{3} + \frac{2}{15}$, $\frac{1}{30} a^{13} - \frac{1}{10} a^{10} + \frac{3}{10} a^{7} + \frac{3}{10} a^{4} + \frac{2}{15} a$, $\frac{1}{60} a^{14} - \frac{1}{20} a^{11} + \frac{3}{20} a^{8} + \frac{3}{20} a^{5} - \frac{13}{30} a^{2}$, $\frac{1}{2820} a^{15} + \frac{29}{2820} a^{12} - \frac{469}{940} a^{9} - \frac{181}{940} a^{6} - \frac{79}{1410} a^{3} + \frac{242}{705}$, $\frac{1}{16920} a^{16} + \frac{1}{8460} a^{15} - \frac{1}{180} a^{14} - \frac{13}{3384} a^{13} + \frac{29}{8460} a^{12} + \frac{7}{20} a^{11} + \frac{163}{376} a^{10} + \frac{157}{940} a^{9} - \frac{1}{20} a^{8} - \frac{781}{1880} a^{7} + \frac{253}{940} a^{6} - \frac{1}{20} a^{5} + \frac{932}{2115} a^{4} - \frac{79}{4230} a^{3} + \frac{43}{90} a^{2} + \frac{853}{4230} a + \frac{947}{2115}$, $\frac{1}{16920} a^{17} - \frac{1}{8460} a^{15} + \frac{41}{5640} a^{14} + \frac{1}{90} a^{13} + \frac{13}{1692} a^{12} - \frac{501}{1880} a^{11} + \frac{3}{10} a^{10} + \frac{25}{188} a^{9} - \frac{593}{1880} a^{8} + \frac{1}{10} a^{7} - \frac{159}{940} a^{6} - \frac{1943}{4230} a^{5} + \frac{1}{10} a^{4} + \frac{251}{2115} a^{3} + \frac{347}{1410} a^{2} + \frac{2}{45} a - \frac{853}{2115}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 818382.7735614459 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3$ (as 18T12):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3$ |
| Character table for $C_2\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.5292.1, 3.1.1323.1, 3.1.108.1, 3.1.588.1, 6.0.196036848.1, 6.0.4000752.4, 6.0.12252303.1, 6.0.2420208.1, 9.1.444611571264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| 7 | Data not computed | ||||||