Normalized defining polynomial
\( x^{18} - 10 x^{16} - 5 x^{15} + 84 x^{14} - 15 x^{13} - 186 x^{12} - 92 x^{11} + 1232 x^{10} - 405 x^{9} + 2987 x^{8} - 2817 x^{7} + 13566 x^{6} + 895 x^{5} + 29602 x^{4} - 626 x^{3} + 31305 x^{2} - 11895 x + 61027 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-677479543132411644552981573632=-\,2^{12}\cdot 7^{12}\cdot 37^{6}\cdot 167^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{24} a^{15} + \frac{1}{24} a^{14} + \frac{1}{12} a^{13} - \frac{5}{24} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{24} a^{9} - \frac{5}{24} a^{8} + \frac{3}{8} a^{6} - \frac{11}{24} a^{5} + \frac{7}{24} a^{4} - \frac{3}{8} a^{3} + \frac{1}{12} a^{2} - \frac{5}{12} a + \frac{7}{24}$, $\frac{1}{696} a^{16} - \frac{5}{696} a^{15} + \frac{37}{348} a^{14} + \frac{55}{696} a^{13} - \frac{73}{348} a^{12} - \frac{79}{348} a^{11} - \frac{151}{696} a^{10} + \frac{331}{696} a^{9} + \frac{1}{116} a^{8} + \frac{33}{232} a^{7} - \frac{83}{696} a^{6} + \frac{133}{696} a^{5} - \frac{3}{8} a^{4} - \frac{2}{87} a^{3} + \frac{11}{174} a^{2} - \frac{311}{696} a + \frac{8}{29}$, $\frac{1}{24876180300347050572547404221554742544} a^{17} - \frac{3434171938243875684389355072217415}{8292060100115683524182468073851580848} a^{16} + \frac{516754934312728056533123863343528653}{24876180300347050572547404221554742544} a^{15} + \frac{66366171776909065581811393306281481}{3109522537543381321568425527694342818} a^{14} + \frac{7139811656666846249107141511301761}{2073015025028920881045617018462895212} a^{13} + \frac{1925666314524564166022685556499287173}{8292060100115683524182468073851580848} a^{12} - \frac{3962889386256863785388918332272945029}{24876180300347050572547404221554742544} a^{11} + \frac{1079618857394183987213748305405466761}{24876180300347050572547404221554742544} a^{10} - \frac{3146475864778347910331447734125482575}{24876180300347050572547404221554742544} a^{9} + \frac{923744442463011297401610029625074137}{2073015025028920881045617018462895212} a^{8} + \frac{7440554462447022895266445135291181887}{24876180300347050572547404221554742544} a^{7} - \frac{1439622748003415245999714580329286819}{4146030050057841762091234036925790424} a^{6} - \frac{2822008228722096633165511172406019607}{12438090150173525286273702110777371272} a^{5} + \frac{9682946352493973252972633796749277743}{24876180300347050572547404221554742544} a^{4} + \frac{1430292509861831196367094277132925375}{8292060100115683524182468073851580848} a^{3} - \frac{9418430783254094062283018758133564887}{24876180300347050572547404221554742544} a^{2} + \frac{676302913327417128954571914340572503}{6219045075086762643136851055388685636} a + \frac{3127713707316346622314071197457938337}{8292060100115683524182468073851580848}$
Class group and class number
$C_{216}$, which has order $216$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 146431.643617 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3\times A_4$ (as 18T60):
| A solvable group of order 144 |
| The 24 conjugacy class representatives for $C_2\times S_3\times A_4$ |
| Character table for $C_2\times S_3\times A_4$ is not computed |
Intermediate fields
| 3.3.148.1, \(\Q(\zeta_{7})^+\), 6.0.400967.1, 9.9.381393587008.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $37$ | 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 37.12.6.1 | $x^{12} + 2026120 x^{6} - 69343957 x^{2} + 1026290563600$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 167 | Data not computed | ||||||