Properties

Label 18.0.67654295375...6576.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{27}\cdot 3^{44}\cdot 13^{15}$
Root discriminant $351.66$
Ramified primes $2, 3, 13$
Class number $179096022$ (GRH)
Class group $[3, 59698674]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![13993003321856, 0, 16914992230656, 0, 4337177495040, 0, 428157265536, 0, 21172612032, 0, 588128112, 0, 9596496, 0, 91260, 0, 468, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 468*x^16 + 91260*x^14 + 9596496*x^12 + 588128112*x^10 + 21172612032*x^8 + 428157265536*x^6 + 4337177495040*x^4 + 16914992230656*x^2 + 13993003321856)
 
gp: K = bnfinit(x^18 + 468*x^16 + 91260*x^14 + 9596496*x^12 + 588128112*x^10 + 21172612032*x^8 + 428157265536*x^6 + 4337177495040*x^4 + 16914992230656*x^2 + 13993003321856, 1)
 

Normalized defining polynomial

\( x^{18} + 468 x^{16} + 91260 x^{14} + 9596496 x^{12} + 588128112 x^{10} + 21172612032 x^{8} + 428157265536 x^{6} + 4337177495040 x^{4} + 16914992230656 x^{2} + 13993003321856 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-6765429537581484920649996381709729642447896576=-\,2^{27}\cdot 3^{44}\cdot 13^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $351.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2808=2^{3}\cdot 3^{3}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{2808}(1,·)$, $\chi_{2808}(907,·)$, $\chi_{2808}(1537,·)$, $\chi_{2808}(883,·)$, $\chi_{2808}(841,·)$, $\chi_{2808}(1291,·)$, $\chi_{2808}(1873,·)$, $\chi_{2808}(2755,·)$, $\chi_{2808}(601,·)$, $\chi_{2808}(2713,·)$, $\chi_{2808}(2779,·)$, $\chi_{2808}(355,·)$, $\chi_{2808}(1819,·)$, $\chi_{2808}(2473,·)$, $\chi_{2808}(1777,·)$, $\chi_{2808}(2227,·)$, $\chi_{2808}(937,·)$, $\chi_{2808}(1843,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{104} a^{6}$, $\frac{1}{104} a^{7}$, $\frac{1}{208} a^{8}$, $\frac{1}{733616} a^{9} + \frac{9}{28216} a^{7} + \frac{351}{14108} a^{5} + \frac{1543}{7054} a^{3} - \frac{1389}{3527} a$, $\frac{1}{2219922016} a^{10} - \frac{1080967}{554980504} a^{8} - \frac{721999}{554980504} a^{6} - \frac{1811335}{21345404} a^{4} + \frac{2474565}{10672702} a^{2} - \frac{382}{1513}$, $\frac{1}{2219922016} a^{11} + \frac{11}{85381616} a^{9} + \frac{1432513}{554980504} a^{7} - \frac{342075}{10672702} a^{5} - \frac{998175}{5336351} a^{3} - \frac{106654}{5336351} a$, $\frac{1}{57717972416} a^{12} - \frac{737845}{1109961008} a^{8} + \frac{240186}{69372563} a^{6} + \frac{2530601}{21345404} a^{4} + \frac{547645}{5336351} a^{2} - \frac{337}{1513}$, $\frac{1}{57717972416} a^{13} + \frac{499}{1109961008} a^{9} - \frac{2410231}{554980504} a^{7} + \frac{104073}{10672702} a^{5} - \frac{809516}{5336351} a^{3} - \frac{2169023}{5336351} a$, $\frac{1}{115435944832} a^{14} - \frac{1548067}{1109961008} a^{8} + \frac{111531}{554980504} a^{6} + \frac{196907}{10672702} a^{4} + \frac{528237}{5336351} a^{2} - \frac{20}{1513}$, $\frac{1}{115435944832} a^{15} - \frac{67}{277490252} a^{9} - \frac{2230}{5336351} a^{7} - \frac{636539}{21345404} a^{5} - \frac{1374917}{10672702} a^{3} + \frac{586102}{5336351} a$, $\frac{1}{230871889664} a^{16} + \frac{119531}{65291824} a^{8} + \frac{59447}{32645912} a^{6} - \frac{17717}{313903} a^{4} + \frac{60647}{313903} a^{2} + \frac{508}{1513}$, $\frac{1}{230871889664} a^{17} + \frac{1}{16322956} a^{9} - \frac{14185}{4080739} a^{7} + \frac{38157}{1255612} a^{5} - \frac{23903}{313903} a^{3} + \frac{1253088}{5336351} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{59698674}$, which has order $179096022$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 59652214.53290313 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-26}) \), \(\Q(\zeta_{9})^+\), 6.0.7380232704.12, 9.9.151470380950257681.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ $18$ R ${\href{/LocalNumberField/17.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ $18$ $18$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ $18$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.9.22.2$x^{9} + 9 x^{7} + 3 x^{6} + 18 x^{5} + 51$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.2$x^{9} + 9 x^{7} + 3 x^{6} + 18 x^{5} + 51$$9$$1$$22$$C_9$$[2, 3]$
13Data not computed